首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
对K439B合金进行了1165 ℃/150 MPa,4 h热等静压处理,采用光学显微镜和扫描电镜对比研究了铸态和热等静压态K439B合金的显微组织。结果表明:铸态K439B合金存在0.25%的显微疏松,热等静压后显微疏松基本消除(0.013%)。与铸态相比,经过热等静压处理后合金中的γ/γ′共晶组织体积分数和尺寸减小,各元素分布更加均匀,凝固偏析系数均更接近1。铸态K439B合金枝晶干处γ′相尺寸和体积分数分别是116.9 nm和17.8%,枝晶间部位γ′相尺寸和体积分数分别为244.4 nm和24.9%。热等静压后合金枝晶干部位的γ′相尺寸及体积分数分别为148.0 nm和17.5%,枝晶间部位γ′相尺寸和体积分数分别为159.1 nm和22.8%。热等静压处理使合金枝晶干、枝晶间部位的γ′相尺寸、体积分数和形貌接近,同时γ′相分布变得均匀。  相似文献   

3.
采用3组不同参数的热等静压(HIP)工艺对K4125镍基高温合金进行显微组织演变研究。结果表明,3种热等静压工艺制备的合金中Hf、Mo等在MC碳化物中的分布区域略有不同,Ta、Mo、Co、Cr、Ti及Al等为正偏析元素,W、Ni为负偏析元素,与其他元素相比较,Ni、Co、Cr偏析程度较小,提高热等静压温度及压力,各元素的偏析程度均有所降低,γ/γ′共晶组织含量逐渐减少,同时枝晶干γ′相的尺寸显著降低,但面积分数无明显变化。此外,3种热等静压合金均出现大块状MC碳化物碎化、二次MC碳化物析出及晶界细小碳化物形成等现象,提高热等静压温度及压力后,这种现象加剧,且碳化物中Ta、Ti含量降低,TaC、TiC的分解倾向增加。  相似文献   

4.
采用圆柱/锥形试样和空壳/填砂两种浇注方式,对比研究不同冷速作用下K438合金凝固组织及沉淀相的形成规律,并结合断口形貌分析探讨精铸工艺对合金高温力学性能的影响。结果表明,成形试样由于凝固冷速较高易形成明显的柱状晶组织,同时凝固时间的缩短降低了合金液的补缩能力,导致铸件内部组织不致密。锥形试样截面厚大,凝固冷速及晶粒生长速度下降,有利于形成等轴粗晶组织,相应的980℃×150MPa高温持久时间长达45h以上,材料伸长率显著提高。空壳造型可以加快铸件冷却,促进细小均匀γ′沉淀相的析出,改善填砂造型缓冷条件下所形成的粗大柱状晶及不规则沉淀相形貌,有利于提高合金在650℃时高温抗拉强度及塑性变形行为。  相似文献   

5.
对K4169高温合金铸件后处理工艺进行研究,通过拉伸试验、持久和疲劳测试,并结合光学显微镜、扫描电镜和透射电镜分析,研究热等静压处理对合金组织和综合力学性能的影响规律。结果表明:1165℃、4 h、140 MPa热等静压处理可有效消除铸态组织中的显微疏松和Laves相;与直接进行标准热处理相比,对合金进行热等静压处理后再进行固溶、时效处理,合金组织中γ″相数量增加,尺寸和分布更加均匀。由于显微组织的改善,合金室温和650℃抗拉强度和塑性均明显提高,650℃、620 MPa持久寿命由27 h延长至93h,低周疲劳性能显著改善。  相似文献   

6.
通过金相显微镜、扫描电镜研究了K424合金显微组织。研究表明:K424合金中主要为MC型碳化物和(γ+γ′)共晶组织,MC型碳化物分为汉字骨架状和颗粒、长条状;汉字骨架状的MC型碳化物不利于提高合金伸长率和断面收缩率。  相似文献   

7.
采用无坩埚感应熔炼超声气体雾化法(electrode induction melting gas atomization,EIGA)制备了Inconel718预合金粉末,并利用SEM对合金粉末进行了表征,通过预合金粉末热等静压工艺制备了Inconel 718粉末合金坯料并测试了力学性能。研究结果表明,镍基合金Inconel 718易于制得化学成分满足要求的洁净粉末,但热等静压过程中碳化物形成元素扩散至粉末表面,并以氧化物为核心生成包含Ti和Nb的碳化物以及Ni3Nb的硬质薄膜,形成粉末高温合金的原始颗粒边界(prior particle boundaries,PPBs),使粉末合金的塑性、韧性和持久性能低于锻造合金。通过后续工艺抑制或消除热等静压过程中产生的原始颗粒边界可显著提升材料的综合力学性能。  相似文献   

8.
研究了热处理工艺对热等静压(HIP)K4169合金铸件微观组织及高温持久性能的影响。结果表明,热等静压处理后的K4169合金铸件进行直接时效(DA)处理,不仅可消除Laves相和针状δ-Ni3Nb脆性相析出问题,还能保留热等静压阶段形成的晶内网络状分布的亚微米级透镜状γ″相。HIP+DA工艺制得的试棒持久性能得到明显提高,这是因为亚微米级透镜状γ″相的存在使得其蠕变变形机制呈现多元化特征。蠕变变形过程中不仅存在位错滑移和攀移,还形成了大量的孪晶组织,从而延长其蠕变寿命,表现出优良的持久性能。  相似文献   

9.
研究了热等静压压力、温度和时间对Ti2AlNb合金铸件组织和力学性能的影响。结果发现,增大热等静压压力对Ti2AlNb合金的抗拉强度影响较小,但可显著改善试样的塑性;在1 040~1 100℃对Ti2AlNb合金铸件进行热等静压处理3h可以获得B2基体上弥散分布着细小O相的结构,其抗拉强度较高;在1 040℃下进行1.5~3h的热等静压处理可显著提高其抗拉强度,但热等静压时间超过4h后会降低其抗拉强度。  相似文献   

10.
采用热等静压技术(HIP)制备90W-Ni-Fe-Cu合金,并通过SEM、TEM、EDS、EPMA和拉伸实验研究了铜对其微观组织和力学性能的影响.结果表明:随着铜含量的增加,合金烧结温度逐渐降低,实现了90W-Ni-Fe-Cu合金由固相烧结向液相烧结的转变.随着铜含量的增加,热等静压90W-Ni-Fe-Cu合金的拉伸强...  相似文献   

11.
分析研究了微量Nd的添加对Mg-Al-Zn合金显微组织和高温力学性能的影响.结果表明:Nd的加入,显著细化了合金的铸态组织,同时出现了新相Al3Nd化合物.当Nd添加量为1.0%时,可使铸态Mg-8.5Al-0.5Zn合金在150℃高温下的抗拉强度达到最大值为160MPa,和未加入Nd的合金相比提高了13.2%.  相似文献   

12.
以激光选区熔化技术(SLM)成型TC4钛合金为研究对象,通过光学显微镜(OM)、扫描电镜(SEM)和电子万能试验机等测试分析方法,研究了热等静压处理温度对TC4钛合金材料微观组织和力学性能的影响。结果表明,SLM态TC4钛合金横截面微观组织由等轴状初生β晶粒组成,纵截面微观组织由呈外延生长的柱状初生β晶粒组成。晶粒内部以不同取向的针状α'马氏体相为主,纳米点状β相在初生马氏体间形核生长。在α+β两相区温度进行热等静压处理,TC4钛合金的组织由α相和β相组成。随着热等静压处理温度的升高,板条状α相粗化成短棒状,β相含量增加且发生一定粗化。随着热等静压处理温度的升高,材料的抗拉强度和屈服强度呈现降低的趋势,断面收缩率也呈下降趋势。热等静压处理工艺为910 ℃-110 MPa-2 h的TC4钛合金可获得最优的强韧性匹配。  相似文献   

13.
在400、600、800、1100 ℃下对FeMoCrVTiSix(x=0、0.3)进行退火处理,利用X射线衍射仪、扫描电镜、差热扫描分析仪、显微硬度计、万能试验机等探究了不同退火温度对合金的组织和力学性能的影响。结果表明,Si元素的添加提高了FeMoCrVTi高熵合金的热稳定性。经过退火处理,FeMoCrVTiSix高熵合金的微观组织仍为以BCC固溶相为主的枝晶结构,但在枝晶边缘出现黑色的细小富Ti相,其含量随着退火温度的增加而增多,在1100 ℃下富Ti相回溶。富Ti相的析出提高了合金的硬度,其中,800 ℃退火后试样的硬度达到最大值,FeMoCrVTi试样的硬度达到932 HV0.2,FeMoCrVTiSi0.3的硬度达到998 HV0.2。  相似文献   

14.
对轧制态7075铝合金采用固溶和时效处理,观察并研究了显微组织、扫描断口。研究发现:不同时效温度下,轧制态7075铝合金晶内和晶界处不同程度析出第二相组织η相,基体晶粒大小有较大差异。其中时效温度为200℃时,晶内和晶界均匀弥散分布着大量第二相,基体晶粒细化;时效温度为220℃时,弥散分布在晶内和晶界的第二相明显减少,并且基体晶粒粗化。时效温度为200℃时,断口韧窝最大最深,表现出典型的韧性断裂。  相似文献   

15.
轧制方式对ATZS3311合金组织和高温力学性能的影响   总被引:1,自引:0,他引:1  
采用光学显微镜、X射线衍射仪、万能材料试验机及扫描电镜等研究了轧制方式对传统重力铸造方法制备的ATZS3311合金的微观结构及高温力学性能的影响.结果表明,轧制方式对合金的微观结构及力学性能有显著影响.单向轧制的合金由于Mg2Si相呈带状分布导致合金室温强度优于交叉轧制,但交叉轧制后Mg2Si相分布更加均匀,其对合金高...  相似文献   

16.
采用SEM和XRD研究了Ti对高硼钢显微组织的影响。采用冲击试验机、热力学模拟实验机、氧化增重法分析了Ti对高硼钢室温冲击及850℃高温力学、抗氧化性能的影响。结果表明,添加Ti后,基体内硼化物形态圆整、呈离散状分布,尺寸大幅减小。这种硼化物形态、分布的优化提高了高硼钢的室温冲击韧性。高硼钢中添加Ti后在基体内形成了TiC析出相,并使基体由单一奥氏体转变为奥氏体+铁素体双相组织。添加Ti元素后,B含量较低时提高B含量可以提高材料的高温力学性能;但B含量较高时,高温力学强度变化不大。B含量为0.33%(质量分数)时,材料的高温力学性能最佳。添加Ti前后高硼钢的850℃氧化测试结果均符合GB/T 13303-1991中2级"抗氧化性"标准,Ti的加入有利于提高高硼钢高温抗氧化性能。  相似文献   

17.
研究了淬火温度对高Ti低合金耐磨钢组织转变、析出相和力学性能的影响,并分析了组织演变和力学性能变化的原因。结果表明:试验钢经不同温度淬火和200 ℃回火后的组织均为高位错密度板条马氏体;析出相尺寸主要为微米-亚微米-纳米三种尺度,微米级析出相呈杆棒状,亚微米以及纳米析出相呈球状,马氏体板条上分布着细小的(Ti, Mo)C析出相。随着淬火温度的升高,试验钢的屈服强度、抗拉强度和维氏硬度均先升高后降低,均在920 ℃时有最大值,分别为1248 MPa、1535 MPa和434 HV,此时伸长率为10.0%。随淬火温度升高,纳米级析出相逐渐回溶,数量减少且尺寸逐渐长大,沿轧制方向被压扁拉长的原奥氏体晶粒尺寸以及马氏体板条块尺寸略有增大,但马氏体板条宽度却无明显长大。大量的弥散分布的5~10 nm的(Ti, Mo)C粒子是促进耐磨钢硬度升高的主要因素。细小的(Ti, Mo)C析出相逐渐长大以及原奥氏体晶粒的增大都不利于耐磨钢硬度的提高。  相似文献   

18.
采用高温渗氮在奥氏体/铁素体双相不锈钢表面形成了奥氏体高氮层。试验结果表明,渗氮层氮含量可达1.0%,与原材料相比氮含量增加了2倍。原始双相组织已经转变为奥氏体,渗氮层深度达到2 mm以上。采用合理优化的高温渗氮工艺,可在提高不锈钢强度、硬度的同时,其伸长率、断面收缩率仍然保持较高的水平。高温渗氮工艺制备高氮无镍不锈钢的最佳工艺参数为:加热温度1200℃、氮气压力0.3 MPa、保温时间24 h。  相似文献   

19.
在ER2319焊丝的基础上,分别添加少量Ce、Cr及Mn元素制备了3种焊丝。采用光学显微镜、扫描电镜和能谱分析技术研究微量元素Ce、Cr和Mn对MIG焊缝组织和性能的影响。结果表明:Ce能够细化二次枝晶间距,但Ce易与Ti、Zr相互反应在晶界生成块状硬而脆的AlCuCeTiZrV复杂金属间化合物,降低了Ti和Zr的异质形核作用,使焊缝组织成柱态。而Cr和Mn则能促进A13Ti、Al3Zr以及复合析出物Al3(Zr,Ti)的析出,增加这些颗粒在高温条件下的稳定性,能够显著细化焊缝晶粒和晶界共晶相,提升接头的力学性能。但Mn的含量达到0.58%时,焊缝中心容易形成粗大树枝晶。  相似文献   

20.
通过光学显微镜、室温拉伸试验、显微硬度计、X射线衍射仪、扫描电镜等方法研究了累积叠轧温度对AZ31镁合金晶粒尺寸、基面织构、界面结合情况及力学性能的影响。结果表明:3道次累积叠轧后的AZ31镁合金晶粒细化效果明显,硬度增大,随着累积叠轧温度的升高,晶粒细化效果减弱,硬度增加趋势减弱。累积叠轧温度升高有弱化基面织构的作用。AZ31镁合板材在450 ℃累积叠轧3道次,综合力学性能最佳,为显微硬度70.64 HV0.05,抗拉强度288.64 MPa,屈服强度203.76 MPa,伸长率16.96%,界面结合强度21.53 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号