共查询到20条相似文献,搜索用时 15 毫秒
1.
图像分割技术的主要对象为自然图像和医学图像,相对于自然图像而言,医学图像的语义分割通常需要较高的精度以进行下一步的临床分析、诊断和规划治疗。目前用于医学图像语义分割的深度神经网络模型由于仅考虑位置的平移不变性,存在局部感受野较小、无法表达长范围依赖关系的问题。设计一种面向医学图像的分割模型,基于内卷U-Net网络,使用内卷操作代替传统的卷积操作,并将内卷结构作为基本的网络结构,提升模型对医学图像局部特征的学习能力。在模型的瓶颈层引入注意力机制模块来学习图像长范围的依赖关系,以提高医学图像语义分割的精度。在肺部CT数据集上的实验结果表明,该模型的Dice系数为0.998,较基于卷积神经网络的分割模型约提高5%,并且大幅缩短Hausdorff距离,具有更高的分割准确度以及较好的稳健性。 相似文献
2.
针对肿瘤细胞图像与正常组织图像之间具有强相似性、边界模糊以及染色变化大等特点,提出了基于TransUNet网络的优化改进分割模型。此分割模型在以TransUNet为主干网络的基础上于编码器部分引入注意力机制,抑制不相关的部分以突显深层特征的语义信息。同时,改变上采样过程中的融合方式,引入BiFusion模块进行选择性地融合,从而使特征数据能够保留更多高分辨率细节信息。该分割模型在Kaggle脑部低级别胶质瘤数据集上验证。实验结果表明,改进后算法的均交并比,召回率和平均精度均值分别为: 97.31%,99.91%和98.72%,与目前医学图像分割的主流方法相比具有更优的性能。 相似文献
3.
人体肾脏存在形状的多样性和解剖学的复杂性,囊肿病变也会导致肾脏形状发生大幅变化。为应对CT图像囊肿肾脏自动分割存在的诸多挑战,提出一种新型深度分割网络模型。该模型设计有带残差连接的双注意力模块,在残差结构的基础上,联合空间注意力和通道注意力机制自适应学习更加有效的特征表达。依据U-Net架构,以残差双注意力模块为基础模块构建编码器和解码器,设置层级间的跳跃连接,使网络能够更加关注肾脏区域特征,有效应对肾脏的形状变化。为了验证所提模型的有效性,从医院共采集79位肾囊肿患者的CT图像进行训练和测试,实验结果表明该模型能够准确分割CT图像切片中的肾脏区域,且各项分割指标优于多个经典分割网络模型。 相似文献
4.
目的 腺体医学图像分割是将医学图像中的腺体区域与周围组织分离出来的过程,对分割精度有极高要求。传统模型在对腺体医学图像分割时,因腺体形态多样性和小目标众多的特点,容易出现分割不精细或误分割等问题,对此根据腺体医学图像的特点对U-Net型通道变换网络分割模型进行改进,实现对腺体图像更高精度分割。方法 首先在U-Net型通道变换网络的编码器前端加入ASPP_SE (spatial pyramid pooling_squeeze-and-excitation networks)模块与ConvBatchNorm模块的组合,在增强编码器提取小目标特征信息能力的同时,防止模型训练出现过拟合现象。其次在编码器与跳跃连接中嵌入简化后的密集连接,增强编码器相邻模块特征信息融合。最后在通道融合变换器(channel cross fusion with Transformer,CCT)中加入细化器,将自注意力图投射到更高维度,提高自注意机制能力,增强编码器全局模块特征信息融合。简化后的密集连接与CCT结合使用,模型可以达到更好效果。结果 改进算法在公开腺体数据集MoNuSeg (multi-organ nuclei segmentation challenge)和Glas (gland segmentation)上进行实验。以Dice系数和IoU (intersection over union)系数为主要指标,在MoNuSeg的结果为80.55%和67.32%,在Glas数据集的结果为92.23%和86.39%,比原U-Net型通道变换网络分别提升了0.88%、1.06%和1.53%、2.43%。结论 本文提出的改进算法在腺体医学分割上优于其他现有分割算法,能满足临床医学腺体图像分割要求。 相似文献
5.
为解决传统模型与算法对遥感卫星图像小目标的分割精度低、泛化能力差等问题,提出一种基于改进U-Net的图像分割算法。将骨干网络改为ResNet18并加入优化后的空洞卷积池化金字塔与卷积注意力机制模块,充分提取小目标边缘特征。该算法在中国南部某地区的公开卫星图像数据集上的平均交并比与分割总精度分别达到了75.8%与95.6%,均超过U-Net、DeepLabV3+、SegNet、W-Net等主流语义分割网络。实验结果表明,该算法能有效改善网络的预测精度与小目标的分割结果。 相似文献
6.
7.
在石油勘探过程中, 岩心颗粒是研究地质层序、评估油气含量以及认识地质构造的有效资料, 对岩心颗粒图像进行颗粒提取有利于地质研究人员后续的深入分析. 岩心颗粒图像通常存在颗粒边缘模糊、背景与颗粒色彩复杂的问题. 为了改善岩心颗粒提取的效果, 本文设计了一种基于改进UNet3+的岩心图像颗粒提取算法. 该算法在UNet3+的每个编码层后加入感受野模块(RFB)来扩大网络的感受野, 从而有效地解决网络因感受野受限而导致的分割精度低的问题, 并在RFB模块后嵌入了卷积块注意力模块(CBAM)使网络更加精确地聚焦于目标区域, 提高目标区域的特征权重. 实验结果表明, 改进后的算法在岩心颗粒图像上具有良好的分割效果, 相比原始UNet3+网络, 分别在mIoU、mPA和FWIoU上提升了5.43%、2.99%和5.34%. 相似文献
8.
针对当前传统农作物病害语义分割方法精度不高、鲁棒性差等问题,本文提出了基于注意力机制的改进UNet草莓病害语义分割模型.首先,在编码器中加入CNN-Transformer混合结构,增强全局信息与局部细节信息的特征提取能力.其次,在解码器中将dual up-sample模块替换传统上采样,提高特征提取能力与分割精度.再使用hard-swish激活函数代替ReLU激活函数,更加平滑的曲线有助于提高泛化性和非线性特征提取能力,防止梯度消失.最后,通过使用结合交叉熵Dice损失函数,加强模型对分割结果的约束,进一步提升分割精度.实验采用了由7种草莓病害2 500张图像组成的数据集,在复杂背景下对草莓病害进行分割,语义分割像素精度达到92.56%,平均交并比达到84.97%.实验结果表明,本文的改进UNet在草莓病害语义分割方面,能实现更好的分割效果,优于大多数分割模型. 相似文献
9.
10.
针对骨骼CT图像对比度较低、特征不明显、现有算法对骨骼特征提取不充分的问题,本文提出了一种基于U-Net的改进网络来实现骨骼数据的精确分割.在网络编码阶段,使用密集连接的空洞卷积模块加强骨骼特征的提取;在网络解码阶段,使用结合注意力机制的融合模块充分利用空间信息与语义信息,改善骨骼信息丢失的问题.改进算法在人体下肢骨骼CT数据集中Dice系数达89.44%, IoU系数达80.55%.与U-Net模型相比, Dice系数提高了5.1%, IoU系数提高了7.63%.实验结果表明,提出的优化算法对下肢骨骼CT图像可以达到精确分割的效果,对骨科疾病的治疗与术前规划提供了参考. 相似文献
11.
针对遥感图像中多个目标聚集导致边缘混淆,小尺度物体分割不明显,以及语义分割过程中全局信息获取不足的问题,提出了一种基于混合注意力与全尺度跳层连接网络的遥感图像语义分割算法DU-net。该算法以U-net3+为基础网络,采用全尺度跳层连接网络作为特征提取网络,摒弃了原算法中的深度监督,建立特征与注意力机制之间的关联,最终实现语义分割的过程。实验结果表明,DU-net算法在不同指标下较经典算法都有明显提升,同时提高了图像边缘分割质量,改善了算法对小尺度目标的分割准确度。 相似文献
12.
13.
随着人工智能和医学大数据的发展,基于深度学习的医学图像分割技术因具有重要的应用价值和前景,已经成为目前的研究热点.为了增强特征图的语义信息,在U-net网络的基础上引入通道注意力机制,对U-net生成的特征逐通道进行压缩,将压缩后的特征逐通道计算权重,然后将该权重与原始特征相乘得出最终的特征.通过在两个不同器官的医学图像数据集上进行实验,Dice系数相较于原始U-net网络分别提高了2.7%和1.8%,验证了该方法的可行性和有效性. 相似文献
14.
在烧结矿生产过程中, 烧结矿形成的气孔是烧结矿的质量评估的重要参数. 由于烧结矿的气孔形状不一、气孔边缘模糊等问题, 导致分割出的气孔误差率较大. 为了能更准确地分割出气孔, 先对烧结矿图像进行OpenCV图像预处理. 对比传统的图像分割算法, 本文提出一种基于改进UNet网络对预处理后的烧结矿气孔图像进行分割的算法. 在UNet网络编码中引入残差和拼接连接结合思想的改进模块, 以获得更多的气孔特征信息. 实验结果表明, 改进的算法在MIoU和Dice指标均优于传统UNet网络和传统图像分割. 相似文献
15.
LBF(Local Binary Fitting)模型利用局部图像信息能够对强度分布不均匀的图像进行分割,然而,该算法仅考虑均值信息,导致模型在处理弱边界图像时得不到理想的分割结果。为此提出一种改进方法:在考虑图像局部均值信息的同时考虑图像局部方差信息和全局方差信息,使得演化曲线能够准确地停止在目标边界上;同时为了加快曲线演化的速度,结合了CV模型的能量项。实验结果表明,改进的方法对含有弱边界信息图像进行分割时能取得较好的效果,演化速度上也有明显的提高。 相似文献
16.
17.
肾脏图像分割对于肾脏疾病的评估以及临床诊断具有重要意义。但传统的肾脏图像分割方法难以对肾脏组织进行精准分割。为了解决上述问题,提出一种结合多尺度UNet模型和分水岭后处理的方法,用于肾脏CT图像的自动分割。多尺度UNet模型的下采样层融合了Inception模块,同时对采样层加入残差块,以有效提取和融合CT图像中多尺度特征,提高了分割准确度。同时,通过一系列分水岭后处理步骤,对模型分割结果进行优化。实验采用grand-challenge中的KITS19数据集。算法实验结果在MIoU(Mean Intersection over Union)和MDSC(Mean Dice Similarity Coefficient)评估指标上得到一定的提高,分别达到了93.37%和99.88%。该算法在与主流的6个方法对比中有一定的优势,能够为肾脏疾病的临床诊断提供更准确的肾脏结构组织信息。 相似文献
18.
针对现有的皮肤黑色素瘤病灶分割精度不高的问题,结合现有卷积神经网络方法提出皮肤黑色素瘤图像分割方法 MultiResUNet-SMIS.首先,依据皮肤黑色素瘤成像特点,引入不同空洞率的空洞卷积替换普通卷积,在参数量相同的前提下扩大感受野,使网络模型能够适用于多尺度病灶分割任务;其次加入空间和通道注意力机制以重新分配特征权重,扩大感兴趣特征影响,抑制无关特征;最后融合Focal loss与Dice loss提出一种新的loss函数FD loss用于计算回归损失,解决前景背景像素不均衡问题,进一步提高网络模型的分割精度.实验结果表明,MultiResUNet-SMIS在ISIC-2018数据集上的Dice指数、IoU指数以及Acc准确率分别达到了89.47%、82.67%、96.13%,与原MultiResUNet以及UNet、UNet++、DeepLab V3+等主流方法相比, MultiResUNet-SMIS在皮肤黑色素瘤图像分割中具有更好的效果. 相似文献
19.
针对脑部磁共振图像中脑卒中病灶的自动分割因分割目标边缘复杂、尺度变化多样而造成的识别精度不高的问题,提出一种基于多尺度注意力的多尺度特征聚合方法,该方法利用注意力机制调节中间特征不同通道的权重,并自适应地选择不同尺度的特征进行融合,在缺血性脑卒中的公开数据集ATLAS上进行的一系列实验,选取Dice系数、豪斯多夫距离、重叠度、准确率和召回率作为评价指标,结果表明所提出的模型在脑卒中病变的分割问题上取得了较好的分割效果;另外,本模型还在Kaggle公开的脑肿瘤数据集上完成对比实验,证明本模型具有良好的可泛化性。 相似文献
20.
骨关节疾病自古以来是人类最高发的疾病之一, 随着老龄化的不断加快, 这类疾病日趋广泛, 关节外科医师面临着巨大挑战. 对人体关节的图像分割方法研究可以帮助医生进行临床诊断和治疗, 然而, 由于存在噪声、模糊、对比度低等问题, 医学图像的特征提取比普通图像更具挑战性, 而且目前大多数分割模型在编码器和解码器之间都采用了普通的跳跃连接, 没有注重解决跳跃连接过程中的信息间隙和损失问题. 为解决这些问题, 提出一种基于DH-Swin Unet的医学图像分割算法, 该模型在Swin-Unet模型的基础上, 在跳跃连接中引入密集连接的Swin Transformer块, 并加入混合注意力机制, 来强化网络的特征信息传递. 通过在某三甲医院提供的真实临床数据对所提方法的性能进行评价, 结果表明, 所提出的方法取得了DSC为86.79%、HD为32.05 mm的分割结果, 在关节疾病的临床诊断中具有一定的实用价值. 相似文献