共查询到20条相似文献,搜索用时 0 毫秒
1.
通过三点弯曲断裂试验,研究了钢纤维、钢纤维-粗聚烯烃纤维、钢纤维-聚乙烯醇纤维以及钢纤维-粗聚烯烃纤维-聚乙烯醇纤维对活性粉末混凝土(RPC)断裂韧性的改善效果.结果表明:与单掺钢纤维的RPC试件相比,钢纤维与粗聚烯烃或聚乙烯醇纤维混掺增强RPC试件的预制裂缝尖端出现数条细小的微裂缝,其荷载-挠度曲线和荷载-裂缝口张开位移(CMOD)曲线均表现出明显的"二次硬化"现象;当钢纤维体积分数为1.5%,聚乙烯醇或粗聚烯烃纤维掺量为9kg/m3时的混杂纤维RPC试件与单掺钢纤维RPC试件相比,其峰值荷载分别提高了54.4%和85.4%,断裂能分别提高了138.4%和88.5%,断裂韧度分别提高了111.9%和50.8%;当钢纤维体积分数为1.0%,粗聚烯烃纤维和聚乙烯醇纤维掺量均为3.0kg/m3或4.5kg/m3时,钢纤维、粗聚烯烃和聚乙烯醇纤维混掺表现出良好的混杂效应;钢纤维体积分数为1.0%~1.5%,合成纤维总掺量为9kg/m3时,对RPC断裂性能的改善效果最理想. 相似文献
2.
3.
4.
在混杂纤维(PVA、PP纤维)总掺量不变的情况下,研究了纤维混掺比例VPVA∶VPP(0∶5、1∶4、2∶3、3∶2、4∶1、5∶0)对混凝土工作性、力学性能和弯曲韧性的影响。结果表明:随着PVA纤维掺量的增加,混凝土的流动度降低,抗压强度和初裂荷载变化不大,抗折强度、峰值荷载、等效弯曲强度和等效弯曲韧性显著增大。 相似文献
5.
6.
为了研究混杂纤维喷射混凝土的弯曲韧性,采用不同掺量的钢纤维和聚丙烯纤维混杂以及高炉微粉复合超叠加的方法制备600mm×600mm×100mm混杂纤维喷射混凝土方板并置于刚性支撑架上,选用等位移控制对方板进行中心加载。通过生成的荷载—挠度曲线及对其进行积分所得的能量吸收值综合评价各组方板的弯曲韧性,同时,通过破坏过程评价各板裂缝控制能力。试验结果表明:掺入1.2%钢纤维和0.11%聚丙烯纤维的喷射板试件的弯曲韧性优于掺入0.8%钢纤维和0.11%聚丙烯纤维的喷射板,其最大峰值荷载提高了18%,板中心挠度至25mm时的能量吸收值也提高了25.6%;对于仅掺入0.8%单一钢纤维的板,混杂了0.11%聚丙烯纤维后,两种纤维间的正混杂效应使得板中心挠度至25mm时的能量吸收值提高了28.5%;高炉微粉掺量的增加能提高混杂纤维喷射混凝土板的弯曲韧性;混杂纤维喷射混凝土板均展现出了良好的裂缝控制能力,板整体呈现裂而不断的延性破坏。 相似文献
7.
为探究混杂纤维改性混凝土的韧性作用机理,以镀铜微丝钢纤维和纳米碳纤维掺量为参数,制备了混杂纤维高强自密实混凝土,进行了弯曲韧性试验。基于试验数据,绘制荷载 挠度曲线,以弯曲韧度比为量化指标,采用数值分析方法对试件样本空间进行扩参数分析。结果表明:纳米碳纤维与镀铜微丝钢纤维在高强自密实混凝土开裂的不同阶段发挥不同层次的改性作用,使混凝土峰值荷载变形得以改善的同时,提高其极限荷载、初始弯曲韧度比和弯曲韧度比;初始弯曲韧度比最大提高幅度为34.5%,HS-S9C6试验组弯曲韧度比达0.84,且随挠度增长,弯曲韧度比下降速率较慢,混杂纤维较好地发挥了改性高强自密实混凝土的韧性作用。 相似文献
8.
9.
通过测定高温作用后5种不同纤维掺量的混杂纤维(聚丙烯纤维和钢纤维)活性粉末混凝土( reactive powder concrete,RPC)残余抗压强度、残余劈裂抗拉强度及残余断裂能等力学性能,研究了混杂纤维RPC受高温作
用后残余力学性能特征.试验结果表明,聚丙烯纤维体积掺量为0.15%、钢纤维体积掺量为2%是改善高温残余力学性能的最佳体积掺量.纤维掺量不同的混杂纤维RPC,经不同高温作用后表面特征和残余力学性能的变化规
律均基本一致.随着温度升高,残余抗压强度先明显增长,再缓慢增长,直至不增长,最后明显下降,残余劈裂抗拉强度随着温度升高先略有下降或几乎不变,再较明显下降,最后大幅度下降;残余断裂能随着温度升高先略有提高(几乎不变),再较明显下降,最后大幅度下降.劈裂抗拉强度对高温造成的孔粗化效应和微裂纹更为敏感,抗压强度则敏感性较小,断裂能则介于抗压强度、劈裂抗拉强度二者之间. 相似文献
10.
为研究混杂使用结构型聚丙烯纤维及结构型钢纤维对混凝土弯曲性能的影响,通过纤维混凝土的三点弯曲试验,分析了结构型纤维对混凝土等效抗弯强度和能量吸收值的影响,并采用混杂效应系数τ定量分析结构型纤维对纤维混凝土弯曲韧性的混杂效应。结果表明:在单掺和混掺结构型纤维混凝土试件中,随着结构型聚丙烯纤维掺量从4 kg/m3增加到8 kg/m3,混凝土的等效抗弯强度和能量吸收值逐渐增大。当结构型钢纤维掺量为30 kg/m3时,加入结构型聚丙烯纤维对混凝土的弯曲韧性会产生正混杂效应,且在结构型聚丙烯纤维掺量为6 kg/m3时,存在最优的正混杂效应,可为实际工程中混杂使用结构型纤维提供一定的参照。 相似文献
11.
12.
普通混凝土具有易开裂,延性差、抗拉强度低的特点.针对混凝土这一系列缺点,采用不同体积掺量的钢纤维和聚丙烯纤维混合掺人混凝土中.采用ASTM-C1018评价体系综合评定混凝土的弯曲韧性指标,试验研究表明:在混凝土中掺入混杂纤维后显著提高了混凝土的弯曲韧性.其中加入聚丙烯纤维能够提高小梁试件的初裂挠度和初裂点的荷载,而钢纤... 相似文献
13.
通过劈裂抗拉强度试验研究了普通混凝土(NC)强度等级和界面处理方式对混杂纤维活性粉末混凝土(HFRPC)与NC界面黏结性能的影响.结果 表明:与凿毛、露骨料、切槽界面处理方式相比,植筋HFRPC-NC试件的劈裂抗拉强度最高,为NC试件破坏强度的1.15~1.22倍,且破坏模式为延性破坏;对于界面粗糙度不同的凿毛、露骨料... 相似文献
14.
纤维增强活性粉末混凝土(RPC)断裂能的研究 总被引:3,自引:1,他引:3
通过三点弯曲梁法测试了钢纤维、混杂纤维(钢纤维、聚丙烯纤维)增强RPC试件的断裂能.试验结果表明,钢纤维对RPC的增强增韧效果显著,而混杂纤维的效果更佳,给出了断裂能、特征长度等参数随纤维掺量的变化趋势,得出较优的纤维掺量,并分析了纤维增强RPC的整个破坏过程,对其破坏机理进行了初步探讨. 相似文献
15.
16.
较高韧性混杂纤维混凝土弯曲抗拉性能试验研究 总被引:1,自引:0,他引:1
以试件边缘弯曲拉应变为控制参数,通过正交试验并参照已有研究成果,对不同纤雏掺量、粉煤灰用量及不同水胶比的混杂纤堆混凝土进行了优化配合比设计,并对试件进行了弯曲抗拉性能试验研究.结果表明,较高韧性混杂纤维混凝土可充分利用材料的抗拉强化作用和钢纤维的防锈蚀作用,能在正常使用条件下,有效地限制混凝土构件的裂缝宽度,最大限度地... 相似文献
17.
邵运达 《建筑·建材·装饰》2008,9(4)
本文通过15个尺寸为100mm×100mm×400mm的混杂纤维混凝士带缺口试件的断裂试验,探讨了钢纤维与聚丙烯粗纤维的混杂效应及其对混凝土裂缝亚临界扩展量、裂口尖端位移临界值、断裂韧度和断裂能的影响.试验结果表明,加入纤维可显著改善混凝土的断裂性能. 相似文献
18.
19.
粗合成纤维活性粉末混凝土抗弯韧性试验 总被引:1,自引:0,他引:1
为研究不同粗合成纤维用量下活性粉末混凝土的抗弯韧性,采用四点弯曲试验对粗合成纤维用量分别为4.75,9.5,14.25,19kg·m-3的纤维活性粉末混凝土试件进行了研究,同时与不掺入纤维的素活性粉末混凝土进行了对比分析。结果表明:不掺入纤维的素活性粉末混凝土弯拉试件发生脆性破坏,试件一裂即断,未得到荷载-挠度曲线的下降段;而粗合成纤维掺入后能够提高活性粉末混凝土的韧性,使弯拉试件转变为明显的延性破坏,荷载-挠度曲线都可得到稳定的下降段,同时曲线还出现了二次强化现象,有2个峰值;随着粗合成纤维掺量的增加,弯拉试件荷载-挠度曲线的下降段愈加平缓,韧性指数增大;粗合成纤维掺量(体积分数)为1.0%~2.0%时,剩余强度在抗折强度的85%以上,此时粗合成纤维对裂后基体具有较强的阻裂能力,能够大大提高弯拉试件开裂后的韧性。 相似文献
20.
提出了一种有助于纤维分散的搅拌工序,给出了一种测量纤维分散性的简易方法,分析了不同纤维掺量(5 kg/m3、10 kg/m3、15 kg/m3)对玄武岩纤维混凝土(BFRC)的纤维分散性、基本力学性能及弯曲韧性的影响。结果表明,搅拌工序可使纤维在基体中均匀分散,亦可降低纤维在搅拌过程中的损伤;随纤维掺量的增加,BFRC力学性能先提高后降低,其对BFRC弯曲韧性试验中的峰值强度、残余强度及弯曲韧性值的影响规律亦是如此;BFRC的力学性能及弯曲韧性在纤维掺量为10 kg/m3时最佳。 相似文献