首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对具有初始针片α组织的Ti-55531合金进行单道次压缩变形,研究该合金在变形温度为750~825℃、应变速率为0.001~1 s-1条件下的热变形行为,并结合应力–应变曲线和针片α组织的破碎球化现象,分析针片α组织破碎球化的临界应变条件。结果表明:变形过程中流变应力随应变速率增大或变形温度降低而增大;合金发生屈服后,流变应力s随应变量ε增加先快速下降、后缓慢下降,直至趋于稳态流变,dσ/dε存在极小值,其对应的应变量为针片α组织发生破碎的临界应变量ξc';应变量小于ξc'时,针片α组织旋转、弯折等引起的流变软化作用占主导,应变量大于ξc'时,针片α组织破碎球化引起的流变软化作用占主导;ξc'随应变速率增大及变形温度降低而增大,其预测模型可表示为ξc'=0.00197[eexp(392300/RT)]0.121。  相似文献   

2.
《钛工业进展》2018,35(5):20-23
为研究具有原始粗片层组织的Ti5321合金热压缩变形过程中流变应力、显微组织等随变形条件的变化,在Gleeble-2800型热模拟试验机上进行高温热压缩试验,试验温度为790~850℃,应变速率为0. 01~1 s~(-1),变形量为30%~70%。结果表明:Ti5321合金的软化机制与片层组织球化和动态再结晶有关,变形量和变形温度是影响合金片层组织球化及β再结晶的主要因素。同一变形温度和应变速率下,随着变形量的增大.会出现片层α相球化及β相再结晶现象。当应变速率和变形量相同时,低温变形主要发生的是片层α相球化行为,高温变形发生的是β相的再结晶。  相似文献   

3.
片层组织TC17钛合金高温变形行为研究   总被引:1,自引:0,他引:1  
通过热压缩试验研究了具有初始片层组织的TC17钛合金在780~860℃和应变速率0.001~10 s-1范围内的热变形行为和组织演变。分析了该合金在两相区变形的应力-应变曲线特征,其流变应力本构关系可以用双曲正弦方程和Zener-Hollomon参数描述,得到TC17合金在两相区变形的平均激活能为488.86 kJ.mol-1。显微组织分析发现:TC17合金在两相区变形时组织演变的主要特征是片层组织球化;热变形参数严重影响片层组织球化过程的进行,加大变形量、降低应变速率以及提高变形温度可以提高片状组织的动态球化程度。  相似文献   

4.
基于摩擦修正的TB6合金流变应力行为研究及本构模型建立   总被引:1,自引:0,他引:1  
TB6合金是一种高强高韧近β钛合金。采用Gleeble-3500热模拟试验机对铸态TB6钛合金进行了等温热压缩变形试验,变形温度范围为700~900℃,应变速率范围为0.001~1.000 s-1,研究了铸态TB6合金热变形流变应力行为,分析了热压缩后的金相显微组织,基于摩擦修正后的流变应力曲线采用双曲正弦形式的修正Arrhenius关系对TB6钛合金的本构模型进行回归。结果表明:铸态TB6合金的热变形行为对变形温度和应变速率较为敏感,随着变形温度的降低和应变速率的增加流变应力显著增大;其热变形机制以动态回复和动态再结晶为主;得到铸态TB6钛合金热变形本构方程,比较回归模型计算的应力值与实测值其平均相对误差仅为1.48%,因此采用Z参数的双曲正弦函数形式能够较为精确地预测铸态TB6合金高温变形时的流变应力。以上研究为TB6钛合金塑性加工过程的模拟和控制提供了理论基础。  相似文献   

5.
在Gleeble-3500热模拟试验机上对Ti-25Al-14Nb-2Mo-1Fe合金进行了等温恒应变速率压缩试验,研究了在变形温度为950~1 100℃,应变速率为0.001~1 s-1,最大变形程度为50%的条件下合金的热压缩变形流变应力行为与微观组织演变。结果表明:Ti-25Al-14Nb-2Mo-1Fe合金的流变应力对变形温度和应变速率均较为敏感,其流变应力曲线具有应力峰值、流变软化和稳态流变的特征。在变形温度为950℃,应变速率为0.001~0.1 s-1的条件下,Ti-25Al-14Nb-2Mo-1Fe合金的热变形特性为片层组织球化,其热变形机制可用晶界分离球化模型进行解释说明;在变形温度为1 000~1 100℃,应变速率为1 s-1的条件下,材料只发生了动态回复现象;在变形温度为1 050~1 100℃,应变速率为0.001~0.1 s-1的条件下,材料发生了动态再结晶现象。  相似文献   

6.
为了研究TA17钛合金热轧条件下的高温变形行为及热加工特性,在热模拟机上开展变形温度为700~1100℃、应变速率为1~40 s~(-1)条件下的热压缩实验,建立基于Arrhenius模型的本构方程,以及应变分别为0.3和0.6时的热加工图,结合热变形显微组织分析,研究该合金的热塑性变形机制。结果表明:TA17钛合金流变应力随着变形温度的升高而降低,随着应变速率的升高而升高。在温度为800~1000℃、应变速率为1~10 s~(-1)时,材料的变形机制主要为动态再结晶;温度为1000~1100℃、应变速率为1~10 s~(-1)时,材料发生动态回复;温度为700~800℃或1000~1100℃、应变速率大于20 s~(-1)时,材料产生绝热剪切带;温度为700~800℃,应变速率为1~5 s~(-1)时,材料易产生裂纹。得出该合金较优的热轧工艺参数为:变形温度800~1000℃,应变速率1~10 s~(-1)。  相似文献   

7.
以热轧态Ti80合金作为基材,在Gleeble-3500热模拟测试机上进行高温压缩测试,变形温度为800~1000℃,应变速率为0.01~10 s-1,总变形比例为75%.结果 表明:Ti80钛合金在800~950℃时处于α+β两相区,其流变行为受变形温度和应变速率的显著影响.Ti80钛合金的加工硬化主要来自于初始α相中位错密度的提高,变形温度的提高会导致α相的减少,流变峰值应力不断降低,过高的应变速率会导致α相内位错运动受阻.Ti80钛合金中的初始α相更容易发生动态回复和动态再结晶,随着变形温度的提高,初始α相不断减少,动态软化程度逐渐减小直至接近0.为保证钛管热轧的稳定性,应适当提高变形温度,保证Ti80钛合金热变形组织具有较高的β相体积分数,同时避免应变速率过高造成轧制载荷过大.  相似文献   

8.
在Gleeble—3500热模拟试验机上对初始组织分别为纯β、等轴α、粗针状α和细针状α的Ti-55511合金进行热压缩,研究合金在700~800℃变形温度、10-3~10-1 s-1应变速率下的塑性流变行为,以及初始组织特征对合金热塑性变形行为的影响。结果表明,不同初始组织合金的流变应力均随应变速率增大和变形温度降低而增大;合金变形难度大小顺序为纯β合金粗针状α合金细针状α合金等轴α合金;合金热加工图失稳区主要在低变形温度和高应变速率区,且随着应变量的增加等轴α合金的失稳区面积逐渐减小,而其他三种组织合金的失稳区面积则呈先增大后减小的趋势。合金变形行为的差异与变形过程中β→α相变、针状α相的塑性失稳、α相破碎/球化程度、剪切变形和局部塑性流动等微观组织演变相关。  相似文献   

9.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s~(-1)和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

10.
TB2钛合金热压缩变形流变应力   总被引:2,自引:0,他引:2  
在Gleeble-1500D热/力模拟试验机上,采用高温等温压缩试验,对TB2钛合金在高温压缩变形中流变应力行为进行了研究;应变速率为0.01-10 s^-1,变形温度为600-1200℃。结果表明:应变速率和变形温度的变化显著地影响合金流变应力的大小,流变应力随变形温度的升高而降低,随应变速率的提高而增大;可用Zener-Hollomon参数的双曲正弦函数形式来描述合金的流变应力行为。  相似文献   

11.
以氢化钛粉为原料,采用粉末冶金法-热等静压法制备高温钛合金Ti-1100,并进行了等温压缩试验,通过压缩样品应力应变曲线进行压缩变形行为分析,再结合Arrhenius双曲正弦本构模型建立热压缩本构方程.通过应力应变曲线分析,发现应变速率在0.01 s-1时,所有样品在加工硬化后均表现出稳态流变行为;而应变速率为1 s-1、温度在900℃或1000℃时,流变应力随着变形达到稳态流变状态后,呈增加趋势.应变速率为0.01、0.1、1 s-1时的热压缩变形激活能分别为96、165、232 kJ/mol.硬度测试结果表明显微硬度随温度和应变速率增加稍有降低趋势,当温度为950℃,应变速率为0.1 s-1时,合金的硬度普遍较小,热加工性能最佳.  相似文献   

12.
用Gleeble-1500型热模拟机研究TC4-DT钛合金在850~1 100℃、应变速率0.001~10 s-1、变形量70%条件下的高温压缩热变形行为,分析了该合金的流变应力行为以及显微组织演变规律,建立了该合金的本构关系模型以及热加工图。研究结果表明,TC4-DT钛合金在两相区和β相区的热变形激活能分别为544.03 k J·mol-1和264.32 k J·mol-1,分别大于纯α相和纯β相的自扩散激活能,表明TC4-DT钛合金热变形由高温扩散以外的过程控制。在两相区热变形时,原始组织发生了不同程度的球化,且变形温度越低球化效果越好。在β相区热变形时,低应变速率下(0.001~0.1 s-1)主要发生动态再结晶,而高应变速率(1~10 s-1)下主要发生动态回复,动态再结晶行为受到抑制。TC4-DT钛合金的失稳区主要分布在低温高应变速率区域,变形温度主要在850~940℃,应变速率主要在0.1~10 s-1,功率耗散率η值小于28%。  相似文献   

13.
基于二元相图计算法和差示扫描量热法(DSC)精确测定了TA15钛合金的相变点。采用热模拟压缩实验、光学显微镜(OM)及电子背散射衍射技术(EBSD)和定量分析法研究了TA15钛合金的β热变形行为,分析了变形温度、应变速率和变形量对其流变应力和显微组织的影响规律。结果表明:TA15钛合金在β热变形时,流变应力曲线呈现两种软化态势:高应变速率条件下,流变应力曲线呈现动态再结晶型,而低应变速率条件下流变应力曲线呈现动态回复型;低应变速率下获得极细的片状马氏体微结构,而高应变速率下为粗大的板状马氏体微结构,且大角度晶界比例较低;应变速率对显微组织特征参数(β晶粒大小及不均匀性、β转变组织片层厚度以及长宽比)的影响较为显著。研究结果可为优化TA15钛合金β热变形工艺参数,获得良好的组织形态提供理论依据。  相似文献   

14.
TiNiNb合金热变形流变行为的研究   总被引:1,自引:1,他引:0  
采用Gleeble-1500热模拟试验机对TiNiNb合金进行了高温压缩变形实验, 分析了该合金在变形温度为800~1050 ℃, 应变速率为0.01~10 s~(-1)条件下的变形行为及流变应力的变化规律. 结果表明, 流变应力受变形温度和应变速率显著影响, 流变应力随变形温度的升高和应变速率的降低而降低. 采用双曲正弦模型确定了该合金的变形激活能Q和应力指数n, 建立了相应的热变形本构关系.  相似文献   

15.
通过恒应变压缩实验研究了锻态TC10钛合金的高温变形行为和组织演变规律,变形温度为800~920℃,应变速率为0.01~10 s~(-1),变形量为60%。研究结果表明:降低变形温度、提高应变速率,流变应力会在变形初期迅速增加,而显微组织没有明显变化,当流变应力达到最大值后随着动态再结晶的发生而逐渐降低。提高变形温度、降低应变速率,能够为动态再结晶提供能量,细化组织并降低流变应力。综合分析表明:在变形温度为840~900℃,应变速率为0.01~0.1 s~(-1)的参数范围内进行热变形可以获得性能优良的TC10钛合金产品。  相似文献   

16.
采用高温拉伸试验,得到TA9钛合金在800~920℃温度范围内和应变速率为0.001~0.125 s-1条件下的应力应变曲线,分析在拉应力条件下,变形温度、应变速率和流变应力三者之间的关系,构造了Arrhenius双曲正弦函数本构方程,并进行了应变修正,绘制出变形量为20%和50%时的热加工图,总结出不同变形条件下合金显微组织演变规律。结果表明:流变应力随变形温度的提高和应变速率的降低而降低,由本构方程计算出两相区变形激活能为569.453 kJ/mol,热加工图中的失稳区主要有四个区域,分别是在800~845℃和870~920℃时,应变速率在大于0.07 s-1和0.002~0.03 s-1处。此外,断裂位置显微组织中α相沿着合金变形的方向被拉长,α晶界变成锯齿状,这与动态回复过程中α向沿亚晶界破碎、分割和晶界突出有关。当变形温度一定时,等轴α晶粒尺寸随应变速率的提高而减小,当应变速率一定时,等轴α晶粒尺寸随温度的升高而变大。  相似文献   

17.
本文利用热压缩法研究了TC18合金的热变形行为,并计算了合金在α+β两相区和β单相区变形激活能,得到了相应的流变应力本构方程。研究结果表明,TC18钛合金在α+β双相区变形时,在较低温度和较高应变速率条件下流变曲线呈现典型的单一峰值的再结晶,并且随变形温度的提高,出现多峰值的再结晶的特征;TC18钛合金在β单相区变形时,流变曲线出现了较长的平缓阶段,而后在较大应变时出现了标志再结晶的峰值应力;经计算得到TC18钛合金β单相区的变形激活能为260.84kJ/mol,α+β双相区的应变激活能336.356kJ/mol。经过拟合得到了TC18钛合金在α+β双相区和β单相区变形的流变应力本构方程。  相似文献   

18.
采用Gleeble-3500热模拟实验机对Cu-Cr-Zr合金进行了压缩变形实验,分析了在变形温度为25~700℃、应变速率为0.0001~0.1000s-1的条件下流变应力的变化规律,利用扫描电镜及透射电镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且变形温度和应变速率均对流变应力有显著的影响,流变应力随着变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感材料;当变形温度为400~500℃时,低应变速率(0.0001~0.0010 s-1)的真应力-真应变曲线呈现动态再结晶曲线特征,高应变速率(0.01~0.10 s-1)的真应力-真应变曲线呈现动态回复特征;在真应力-真应变曲线的基础上,采用双曲正弦模型能较好地描述Cu-Cr-Zr合金高温变形时的流变行为,建立了完整描述合金热变形过程中流变应力与应变速率和变形温度关系的本构方程,确定了合金的变形激活能为311.43 kJ·mol-1。  相似文献   

19.
通过热模拟压缩实验研究了温度和应变速率对W-Cu20合金热压缩流变应力的影响,分析了W-Cu20合金热压缩以及热轧时裂边的原因.结果 表明,随着温度的降低和应变速率的增加,W-Cu20合金的流变应力以及峰值应力明显增大.当温度高于900℃或低于800℃时,W-Cu20合金的裂边程度均较严重;随着应变速率的提高,W-Cu...  相似文献   

20.
Ti-5523钛合金热变形流变行为的研究   总被引:6,自引:6,他引:0  
采用恒应变速率高温压缩模拟实验,对Ti-5523钛合金在应变速率为0.001~5.0 s-1,变形温度为600.900℃条件下的流变应力行为进行了研究,计算了变形激活能及相应的应力指数,建立了合金的应力.应变关系方程.结果表明:在恒温条件下,合金的流变应力随应变速率的增大而增大;在恒应变速率条件下.合金的流变应力随温度的升高而降低;变形激活能和应力指数分别为Q=317.811 kJ·mol-1和n=4.43;可用包含Arrhenius项的Zener-Hollomon参数描述Ti-5523钛合金高温塑性变形时的流变行为.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号