首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
可拉伸温度传感对实现人机触觉交互和温度调节至关重要,这些传感元件需要贴合特异性表面,且在拉伸条件下保持温度感知的精度.现有可拉伸温度传感器由于温度和形变引起电阻变化的相互干扰,在拉伸过程中存在固有的传感不稳定问题.本文提出了一种超可拉伸水凝胶热电偶,通过构建具有动态交联双网络的热电水凝胶,实现水凝胶热电偶的超拉伸性.通过设计的P型和N型热电水凝胶,构建热电偶单元.热电偶表现出1.93 mV K-1的高塞贝克系数,即使在100%的拉伸应变下,灵敏度依然保持稳定.本文的研究结果为可拉伸温度传感器提供了一种新的策略,并有望广泛应用于智能可穿戴设备.  相似文献   

2.
LaTaON2是一种极具吸引力的可见光活性光催化水分解材料.它的吸收波长能够达到650 nm,并且符合水分解反应的热力学要求,是光催化水分解的候选材料.尽管LaTaON2具有这些优异的性质,它的光催化活性通常不够理想.这是由于LaTaON2材料通常具有较高的缺陷浓度,严重阻碍了电荷分离.在本文中,我们通过将Al掺杂到Ta亚晶格中来对LaTaON2材料进行改性,得到LaTa1-xAlxO1+yN2-y(0≤x≤0.20). Al掺杂不仅抑制了LaTaON2材料中的缺陷浓度,增加了其表面亲水性,而且还保持了材料原有的可见光吸收性质.这些改进显著改善了LaTaON2材料内的电荷分离情况,并极大增强了材料可见光下的光催化氧化水制氧性能.在最佳条件下, Al掺杂的LaTaON2在420±20 nm处水氧化的表观量子效率达到1.17%,这个性能要优于大多数已报...  相似文献   

3.
通过硝酸根电化学还原反应将NO3-转化为NH3是一种有前景的制氨和“绿氢”储存方案.Co3O4对于硝酸根还原析氨反应表现出较高的析氨法拉第效率和稳定性,有望成为理想的催化剂.然而,在Co3O4上发生硝酸根还原反应仍需较高的过电位,从而阻碍了能量转换效率的提升.本文中,我们合成了Cu掺杂Co3O4多孔空心纳米球用作硝酸根还原析氨催化剂.Cu掺杂在保障析氨法拉第效率和稳定性的前提下大幅降低了反应所需的过电位,有效提高了析氨速率.实验和理论分析均表明,Cu掺杂使Co3O4的最高占据态能量上移,缩小了Co3O4的最高占据态与NO3-的最低未占据分子轨道之间的能垒,从而降低了电子从Co3O4向NO3  相似文献   

4.
制备p-n结以及探索其物理机制在发展各种功能器件和推进其实际应用中起到关键作用.超宽禁带半导体在制备高压高频器件上有着巨大的潜力,但是氧化镓p型掺杂困难限制了氧化镓同质p-n结的制备,进而阻碍了全氧化镓基双极型器件的发展.本文通过一种先进的相转变生长技术结合溅射镀膜的方法,成功制备了n型锡掺杂β相氧化镓/p型氮掺杂β相氧化镓薄膜.本工作成功制作了全氧化镓单边突变同质p-n结二极管,并且详细分析了器件机理.该二极管实现了4×104的整流比、在40 V下9.18 mΩcm2的低导通电阻、4.41 V的内建电势和1.78的理想因子,并在交流电压下表现出没有过冲的整流特性以及长期稳定性.本工作为氧化镓同质p-n结初窥门径,为氧化镓同质双极型器件奠定了基础,为高压高功率器件的应用开创了道路.  相似文献   

5.
酸性环境中光电化学水分解具有广阔的应用前景,但由于缺乏稳定的光阳极以及有效的非贵金属助催化剂,其发展受到了极大的阻碍. WO3是能够在酸性环境下稳定的半导体之一,但其在光照下的快速性能衰减仍然是一个悬而未决的问题.本研究提出WO3和WO3/SnO2光阳极光电流的快速下降是因为电极/电解质界面上产生的羟基自由基(OH·)导致的.我们发现在pH为0.3的电解质中引入钴(Co2+)离子可以有效解决这个问题. Co2+的存在可以促进H2O高效氧化为O2,而不是产生不利的OH·自由基.最终在Co2+存在条件下,可以将光电分解水的法拉第效率从40%提高到95%,将光电流密度从0.6提高到0.8 mA cm-2,并在1.2 V (可逆氢电极)下稳定25 h.重要的是,在利用维生素C淬灭OH·自由基以后,其光电流稳定性表现出与引入Co2+离子时一致,进一步表明Co...  相似文献   

6.
基于半导体的高效太阳能转换光催化是应对日益严重的全球能源和环境危机的理想策略.然而,光催化的发展仍然受到可见光利用率低、电荷转移和分离效率低、反应位点不足等问题的限制.本文采用一步还原法将Au纳米颗粒沉积在Bi2WO6表面,同时诱导Bi2WO6表面形成氧空位.我们发现氧空位浓度随着Au负载的增加而增加. Au纳米颗粒和氧空位改善了材料的光吸收,并促进了光生载流子的分离和运输.此外,氧空位与附近的金属活性位点协同作用,优化了反应物在催化剂表面的吸附能,改变了CO2分子在催化剂表面的吸附形式,最终在无需牺牲剂的气固体系中实现了高达34.8μmol g-1h-1的CO光催化产出速率,比未改性的Bi2WO6高出9.4倍.这项工作有望进一步加深我们对金属纳米颗粒与氧空位之间的关系及其在光催化中的协同作用的理解.  相似文献   

7.
传统电化学高级氧化技术存在有机物降解效率不高、能耗大的弊端,并且平板式电极表面存在滞止边界层,严重限制了传质过程.本工作中,我们首先通过水热方法将一维Co3O4纳米针状阵列结构原位负载于金属钛膜电极,低压电场下,实现难降解有机物的去除,其中:对于苯酚的去除率可达≥99%,化学需氧量(COD)和总有机碳(TOC)去除率分别为9 9.5%和9 2.5%,电流效率为8 8.7%,能耗仅为0.061 kW h (kg COD)-1. Co3O4纳米针的阵列式膜电极可以提供更多的CoOOH活性位,增强电场强度,而且其穿透式流体模式导致强化对流,可以明显地改善电催化反应过程的传质,因而提高膜电极的催化效率,降低能耗.最后,我们设计了H型电催化膜反应器,耦合阴极的析氢反应,降解有机物的同时制备纯氢,极大地提高了电极和膜反应器的效率.  相似文献   

8.
简单、精密、可控的制造技术在功能表面中具有广阔的应用前景.在这项工作中,我们通过使用食盐这种水溶性材料作为模板,利用金属玻璃优异的热塑成型性能,成功地实现了多孔金属玻璃的溶解制造.通过这种溶解制造方法制备的微/纳米结构具有良好的可调控性,不仅可以制备大面积多孔结构,还可以制备具有纳米级复制精度的有序规则阵列.其中,通过可溶性模板策略制备的无序多孔结构具有约140°的水滴接触角和接近于0°的油滴接触角,可用于油水分离,并且在强酸和强碱的环境中浸泡后表现出稳定的润湿性.即使在严重磨损后,带有多孔结构的表面仍可保持约130°的水滴接触角和约4°的油滴接触角.此外,该策略显示出优异的可重复使用性能.通过在同一个金属玻璃表面上重构三次多孔结构,发现每次重构的多孔结构的润湿性没有显著变化.本文的研究成果为制备多级孔结构及功能表面提供了一种简便可控的方法.  相似文献   

9.
过渡金属氧化物(TMOs)用作电极材料时,会在循环过程中产生严重的体积变化,并且其自身的导电率也较低,因此它的电化学性能较差.设计和开发独特的TMOs纳米结构并将其与导电碳基底相结合是改善其电化学性能的有效策略.本工作中,我们设计了一种C/Cu多孔微球,并通过原位合成在碳壁上垂直生长Co3O4纳米片.作为导电基底,C/Cu多孔微球提供了多尺度孔隙网络和大的电极/电解质接触界面,显著改善了电子和离子扩散动力学.原位合成的Co3O4纳米片牢牢地固定在碳壁上,从而提高了复合微球在长期循环中的结构稳定性.得益于独特的结构特征,用作锂离子电池负极材料的C/Cu@Co3O4复合多孔微球表现出优异的倍率性能、高充电比容量和出色的循环稳定性.  相似文献   

10.
O2通过电化学法直接合成H2O2是目前最有可能替代工业上高耗能的蒽醌氧化/还原法的合成方法,但其一直受限于难以开发出高效且低成本的电催化剂.在此,我们通过聚合物脱卤的绿色策略合成了氧化硼掺杂碳(O-BC)材料,将其用作2e-氧还原反应(ORR)的电极材料,采用电化学的方法制备H2O2.通过实验调控硼源(H3BO3)的用量和退火温度,优化了O-BC材料的催化活性.电化学测试表明:最佳的O-BC-2-650样品表现出高达98%的H2O2选择性;在H型碱性电解槽中H2O2平均产率为412.8 mmol gcat.-1h-1.密度泛函理论计算模拟表明:与一个氧原子相连的硼原子是最佳的活性位点,在吸附O2的氢化过程中获得最低的吉布斯自由能差(ΔG)0.03 e V;而没有与氧原子相连或者与两个...  相似文献   

11.
以著名的LiB3O5为模板,通过增强其结构中B2O5的夹角使双折射更小,在封闭体系中通过高温溶液法获得了两种新的用于制造零级波片的双折射晶体Li2MLaB18O30 (M=Rb, Cs).有趣的是,相邻的B2O5接近垂直排列,使得它们表现出比商用石英晶体(Δn~0.0092在可见光区域)小得多的双折射率(分别为0.0032@532 nm和0.0027@532 nm).此外,Li2MLaB18O30 (M=Rb, Cs)晶体的紫外截止边均低于200 nm,表明它们可用作深紫外区域的零级波片材料.  相似文献   

12.
电催化二氧化碳还原反应(CO2RR)被认为是一种潜在的碳循环技术,因为它可以利用CO2作为资源在温和条件下生产高附加值燃料和化学品.因此,开发高效的二氧化碳还原反应催化剂极其重要.本文设计了一系列TM-N2O2Cx (TM=Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn)单原子催化剂,并利用密度函数理论研究了其对CO2RR的催化活性.这些TM-N2O2Cx催化剂在相对较低的过电位下对三种不同的产物,包括CH4、CO和HCOOH,表现出优异的CO2RR产品选择性,其中ScN2O2Cx、Mn-N2O2Cx、Zn-N2O2Cx的CO2RR产品是CO,V-N2  相似文献   

13.
本文报道了一种对CO氧化反应具有低温催化活性的新型硫功能化MXene-Ti2C (Ti2CS2)负载的锇金属单原子催化剂Os1/Ti2CS2.通过密度泛函理论计算,从一系列过渡金属(M=Fe, Co, Ni, Cu; Ru, Rh, Pd,Ag; Os, Ir, Pt, Au)中筛选出最稳定的锇金属单原子催化剂.计算结果表明, Os1/Ti2CS2有利于O2和CO的共吸附,且O2分子的吸附能略高于CO分子.此外,由于O2+2CO能稳定地共吸附在Os1单原子上, CO氧化反应可能通过三分子反应机理进行.因此,我们研究了CO在Os1/Ti2CS2单原子催化剂上发生氧化反应的四种不同的催化机理:Langmuir-Hinshelwood (L–H)、Eley Rideal (E–R)、termolecular L...  相似文献   

14.
由于金属与二维半导体接触界面复杂的电荷转移,界面处经常会产生强烈的费米钉扎效应.本文以Bi2OS2(拥有目前二维半导体材料中已知的最高电子迁移率)作为二维沟道层,采用密度泛函理论系统地计算了其与金属电极接触界面的肖特基势垒以及界面电荷转移机制.当Bi2OS2与三维金属电极接触时,界面强的电荷转移主要由化学键的形成以及泡利电荷排斥作用引起,导致界面具有强的费米钉扎,并且由这两个原因引起的电荷转移方向相反.此外,当金属的功函数大于半导体的电离能或小于半导体的电子亲合能时,界面会产生一个额外的电荷转移.当Bi2OS2与二维金属电极接触时,界面的费米钉扎完全被抑制,界面遵循肖特基-莫特定律,这是因为本文所选用的二维金属电极能够有效地屏蔽泡利电荷排斥作用.因此,通过选择不同功函数的二维金属电极,能够宽范围、线性地调节界面的肖特基势垒高度,并且能够实现界面从n型欧姆接触到p型欧姆接触的转变.这项研究不仅为Bi2OS2基器件的...  相似文献   

15.
近年来,力致发光(ML)材料引起了科研人员的广泛关注,因其在众多领域特别是温度传感领域具有潜在的应用价值.值得注意的是,基于ML的温度传感尚处于萌芽期,且目前没有理论支持.本文中,我们基于CaZnOS:Er3+力致发光材料和玻尔兹曼分布建立了ML温度传感技术的理论框架.在外部应力刺激下, CaZnOS:Er3+力致发光材料能够发射出明亮的绿色荧光,且遵从玻尔兹曼分布理论.基于此,我们证实了该ML温度传感理论框架的适用性,并将其应用到实际案例中,即监测水壶的温度.与此同时,我们也开发了CaZnOS:Er3+力致发光材料的多重功能,验证了其在动态防伪和信息加密提取方面的应用.简言之,本工作从实验和理论两方面进行研究,奠定了ML温度传感技术实用化的基础.  相似文献   

16.
聚合物电介质在使用过程中表面会积聚大量的电荷,导致局部电场畸变、闪络、爆炸和设备损坏等问题.由于造成电荷积聚的聚合物载流子深陷阱的主要构成目前仍不清楚,这一瓶颈问题目前仍未得到有效解决.本文基于开尔文探针力显微镜(KPFM)和磁力显微镜(MFM)观测了纳米微区聚合物自由基的电荷行为,发现自由基表现出深陷阱的特性.第一性原理计算发现出现自由基后的体系中存在深能级缺陷态.微观和宏观的电荷测量表明,清除自由基后的聚合物表面电荷量显著减少,这为聚合物电介质在诸多领域中的安全使用提供了有效的材料改性方案.本文首次揭示了电介质中的自由基是深陷阱,为后续关于聚合物电介质的电荷特性方面的研究提供了重要的理论指导.  相似文献   

17.
理解铁电材料畴结构在低温条件下的翻转行为,对于铁电物理以及其在宽温域的应用都非常重要;然而,目前在低温条件下直接观测介观尺度下的畴翻转仍然面临着巨大的挑战.本论文利用铁酸铋(BiFeO3)作为模型来研究3.6–260 K温度范围内的铁电畴翻转行为.菱形相的BiFeO3在温度为130 K时观测到了明显的铁电保持失效现象;这是因为BiFeO3在130 K附近有较大的热释电系数,从而使其升温到该温度附近时释放了大量的热释电电荷,进而产生较强的退极化场,导致铁电极化翻转.另外,本论文还发现通过纳米尺度设计相界可以有效地抑制铁电保持失效.本研究为变温条件下,尤其是低温温域,研究铁电翻转提供了实验范式.  相似文献   

18.
铜基氧化物表面的氧化物种可以增强CO2吸附,降低含氧中间体的结合能,从而提高电还原CO2的一步还原产物的产率.鉴于此,在还原过程中,Cu2O上的残留氧通过Sn2+稳定,并且残留氧的保留通过原位拉曼光谱(Cu–Oads)得到了证实.同时,原位拉曼光谱和密度泛函理论计算结果证明,由于残留氧的存在,一氧化碳中间体在SnO/Cu2O催化剂的吸附能比Cu2O催化剂明显降低.这使得其在-0.8 V (相对于可逆氢电极)的电位下获得高达97.5%的法拉第效率.铜基氧化物催化剂的氧稳定策略对设计高性能电还原CO2催化剂具有指导意义.  相似文献   

19.
调控活性位点的自旋态是提高氧电催化性能的重要研究方向.然而,在非晶电催化剂中,提升催化活性的自旋调控机制尚不清楚.本工作通过一步水热法合成了一系列杂原子掺杂的非晶态过渡金属硫化物材料,其中在钼(Mo)掺杂的硫化钴(CoS)中,部分Co2+的电子构型由高自旋态HS(t2g5eg2)转变为低自旋态LS(t2g6eg1),优化了各种中间体的吸附自由能,从而加速了氧化还原反应动力学.以Mo-CoS为阴极催化剂组装的锌-空气电池具有优异的循环稳定性(超过100 h).大模具锌空气电池(100 cm2)在大电流(0.5 A)下仍表现出高放电电压(1.25 V)和高质量能量密度(93 W h kg-1),可以点亮2.5 m的发光二极管条带持续7天以上.这项工作为理解非晶材料中自旋态调控对氧电催化活性影响的机理提供了借鉴.  相似文献   

20.
锂硫电池作为一种极具前景的二次电池系统受到了广泛关注.然而,传统液态电解质中多硫化锂的穿梭效应阻碍了其发展.在本工作中,我们制备了用于锂硫电池的功能性凝胶电解质.该电解质由聚偏氟乙烯-六氟丙烯(PVDF-HFP)和连续γ-Al2O3三维骨架组成. PVDF-HFP提供锂离子传输路径,使电解质具有良好的柔性; γ-Al2O3为路易斯酸,可通过与多硫化锂之间的路易斯酸碱相互作用抑制穿梭效应.而且, γ-Al2O3与路易斯碱TFSI-有相互作用,可促进锂盐解离,提高锂离子迁移数.此外,部分γ-Al2O3可以与LiF反应形成锂离子导体LiAlO2和Li3AlF6来提高离子电导率.使用该凝胶电解质的锂硫电池在正极容量保持和负极形貌方面展现出良好的稳定性.该项研究为制备高能量锂硫电池的多功能凝胶电解质提供了一种有前景的策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号