首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
近年来,随着绿色能源的兴起,锂空气电池以其高能量密度和绿色环保等特点,成为了研究热点.其中,采用非水电解液体系的锂空气电池的能量密度约为11420 Wh/kg,几乎等同于汽油的能量密度,这使得锂空气电池在电动汽车等方面具有极大的应用潜力.本文从碳酸酯基电解液、醚基电解液、含硫类电解液、基于离子液体的电解液、电解质盐类五...  相似文献   

2.
随着新能源汽车及储能行业的快速发展,传统正极材料难以满足人们对电池高能量、高密度锂电池的要求。富含Li和Mn的层状氧化物xLi2MnO3·(1–x)LiMO2 (M=Ni,Mn,Co),其高比容量可超过250 mA·h·g–1,有希望成为下一代锂离子电池最理想的正极材料。但是,富锂材料仍存在首次循环不可逆容量高、循环性能差和倍率容量低等问题,为解决这些问题,本文阐述了富锂正极材料的结构和电化学反应之间的构效关系,讨论了金属氧化物、金属氟化物、碳、导电聚合物和锂离子导体等涂层材料对富锂正极材料电化学性能的影响规律及作用机理,同时还对以上涂层在富锂正极材料中应用的优缺点进行了总结。最后,对锂离子电池富锂正极材料的包覆改性的未来发展发现作出展望。   相似文献   

3.
高镍/硅碳体系是最具潜力的下一代高能量密度锂离子电池体系,但由于电池循环稳定性差,目前规模化应用受限。研究认为,构建稳定的SEI是提升高镍/硅碳电池容量保持率的关键方法之一。传统电解液中六氟磷酸锂(LiPF6)会产生酸腐蚀性产物,不利于SEI的稳定;双氟磺酰亚胺锂(LiFSI)作为一种新秀锂盐被证明有优异的热稳定和成膜性能,会腐蚀正极集流体。研究了LiFSI-LiPF6双盐电解液在高镍/硅碳软包电池中的应用,通过化成、循环和储存测试,评测其电化学性能。结果表明,LiFSI-LiPF6电解液可以降低电池化成产气量和内阻,提升电极稳定性,0.6 mol/dm3 LiFSI+0.6 mol/dm3 LiPF6电池循环1 000圈后的容量保持率最高,达75.66%,其储存电压降比LiFSI单盐电池少37.64%。  相似文献   

4.
锂硫电池具有能量密度高、对环境友好,原材料廉价等优势,有望成为下一代最有发展潜力的动力电池之一。但锂硫电池的库伦效率低、循环性能差是制约了其实用化的主要障碍。通过在高硫载量硫/碳(S/SP(super-P)/CNT(carbon rano tube),硫载量为90%)电极的表面涂覆一层非活性物质层(多孔碳层),制备了带涂覆层的S/SP/CNT复合电极(C-S/SP/CNT复合电极)。采用热重(TGA)方法分析了S/SP/CNT复合材料中硫的含量。采用场发射扫描电子显微镜(FESEM)对复合电极(C-S/SP/CNT)循环前后的表面形貌进行了表征。结果表明, S/SP/CNT复合材料中硫含量高达90%,循环100周后电极的表面没有明显的团聚现象。碳多孔层不但能够物理吸附充放电过程中溶解在电解液中的多硫化物,抑制穿梭效应,且其良好的导电能力,能进一步提高电极的导电性能,增加电极反应的活性位点。采用恒流放电的方法对复合电极的电化学性能进行了测试。C-S/SP/CNT复合电极的首次放电容量达1192.3 mAh·g~(-1),循环300周后的可逆容量仍有442.9 mAh·g~(-1),表现出良好的循环性能。  相似文献   

5.
近几年,锂离子电池富锂材料xLi2MnO3·(1-x) LiMO2(M=Ni、Co、Mn等) 由于其高放电比容量、高电压、低廉的价格受到人们越来越多的关注.但是,富锂材料循环性能差、倍率性能低、首圈充放电效率低和电压降等问题是阻止富锂材料商业化的几个主要原因。采用液相法合成富锂材料Li[Li0.2Mn0.54Co0.13Ni0.13]O2,通过表面包覆一层ZrO2, 放电倍率1 C下循环100圈之后,2% ZrO2包覆量的富锂材料的放电比容量比未包覆的放电比容量多53.8 mAh/g,大大提高富锂材料的循环性能.   相似文献   

6.
低碳、环保、高效是21世纪社会发展的主旋律。原材料廉价易得的锂硫(Li-S)电池因其超高能量密度(2 500 Wh·kg-1)而受到能源转化与储备设备研究者的瞩目。然而,锂硫电池绝缘的活性物质与循环过程中不可避免的穿梭效应导致其反应动力学缓慢,进而造成包括循环倍率能力较差与库伦效率低下在内的诸多问题。研究人员现已发现了具有良好电导率且对多硫化物(LiPSs)具有吸附转化双重能力的过渡金属磷化物(TMPs)。本文将重点介绍运用在锂硫电池正极的不同过渡金属磷化物材料的设计合成方法与电化学性能提升研究相关进展,并对该类材料的未来发展进行展望。  相似文献   

7.
近年来,钾离子电池(KIBs)因钾元素丰度高、氧化还原电位低等优势受到越来越多的关注.负极是电池的重要组成部分之一,直接影响着电池的安全性、稳定性和能量密度.其中,合金负极基于多电子反应机制能够提供较高的理论比容量,有望提升全电池的能量密度.此外,其储钾电位远离了金属钾的沉积/析出电位,保证了电池的安全性.然而,(去)合金化过程中剧烈的体积波动会引起电极材料的破裂和粉化,进而导致容量快速衰减.优化电解液构筑稳定的电极–电解液界面是一种切实有效稳定合金负极结构的方法,主要包括:调控固体电解质膜的组分、调节钾离子的溶剂化结构、利用溶剂对电极的化学吸附作用等.它具备工艺简单、成本低廉等优点.本文综述了近年来钾离子电池合金负极与电解液界面作用的相关研究进展,总结了电解液的优化策略,分析了合金负极的储钾机制和电化学性能,重点阐述了合金负极与电解液的界面作用机制,并对未来钾离子电池电解液的发展提供了新的见解与思路.  相似文献   

8.
磷酸铁锂基锂离子电池由于具有高的安全性能和优异的循环性能是新能源领域的研究热点。而磷酸铁锂材料本身导电性差,在实体电池制作过程中容易出现内阻较大和倍率性能不佳等问题,因此需要研究导电添加剂组成对电池性能的影响。本文用商业化的LiFePO4、石墨和电解液为主要原料,以碳纳米管(CNT)和导电碳黑(Super P)为导电添加剂,制作了20 Ah容量兼倍率型的磷酸铁锂软包电池。扫描电镜(SEM)分析测试表明导电碳黑Super P和CNT分散均匀,可与磷酸铁锂颗粒形成点和线的接触,进而可以提供更多的附加导电通路。应用该复合导电添加剂所制作的磷酸铁锂动力电池具有1.0 mΩ内阻,电池首次效率在91%以上,正极材料克容量0.5C发挥到146.32 mAh·g-1,9C/1C接近100%,倍率性能优异,电芯经过2165周循环电池容量保持率为91.78%,循环性能优秀;而使用常规导电碳SP+KS-6的分容比容量是139.06 mAh·g-1,电池内阻均值为3.25 mΩ,电芯经过2003次循环,容量保持率为87.63%。经过优化实验条件,正极中添加3%SP+1%KS-6+1%CNT复合导电剂的电芯整体性能最佳。  相似文献   

9.
近年来,在电动汽车和电子设备等对高性能储能系统的需求量逐渐增加,在较高理论比容量和理论比能量等方面的锂硫电池体系也受到更加广泛的关注和重视。单质硫的储量较为丰富且具有无毒和低成本等优势,对环境保护工作的开展存在着必要影响。但是单质硫及放电产物硫化锂存在着导电性差且中间产物多硫化物容易溶于电解液等问题,对锂硫电池的循环稳定性具有不利影响。在锂硫电池正极材料中,碳/硫复合材料的潜力是比较大的,这就需要加强对其植被及性能考察和研究。  相似文献   

10.
水系锌离子电池具有低成本、安全、环保等优点,在规模化储能和智能可穿戴方面极具应用前景.提高其循环稳定性以及循环寿命是实现水系锌离子电池进一步应用的关键问题之一.本工作采用二维层状蒙脱土(MMT)和丙烯酰胺单体,通过两步法合成了具有三维网状结构的蒙脱土–聚丙烯酰胺水凝胶电解质(Montmorillonite–polyacrylamide hydrogel,MMT–PAM).蒙脱土的加入为丙烯酰胺单体的原位聚合提供了吸附位点,并通过MMT和PAM高分子链之间的氢键作用显著提高了水凝胶的机械性能,抑制了锌枝晶生长(在0.5 mA·cm-1电流密度下稳定循环250 h).此外,蒙脱土表面丰富的负电荷为Zn2+的快速传输提供更多离子传输通道,提高其离子电导率(室温下为34 mS·cm-1),赋予MMT–PAM水凝胶电解质更好的倍率性能和循环稳定性.基于上述优点,组装的水系Zn–MnO2电池在0.2 A·g-1的电流密度下提供了289 mA·h·g-1的比容量,且可稳...  相似文献   

11.
近年来,在电动汽车和电子设备等对高性能储能系统的需求量逐渐增加,在较高理论比容量和理论比能量等方面的锂硫电池体系也受到更加广泛的关注和重视。单质硫的储量较为丰富且具有无毒和低成本等优势,对环境保护工作的开展存在着必要影响。但是单质硫及放电产物硫化锂存在着导电性差且中间产物多硫化物容易溶于电解液等问题,对锂硫电池的循环稳定性具有不利影响。在锂硫电池正极材料中,碳/硫复合材料的潜力是比较大的,这就需要加强对其植被及性能考察和研究。  相似文献   

12.
本文主要通过水热法制备了锂离子电池正极材料Li3V2-2x/3Mgx(PO4)3/C,并研究了掺杂金属元素Mg对Li3V2(PO4)3晶体结构和电性能的影响。结果表明,当Mg含量x=0.45(质量分数,下同)时,且在温度为750℃焙烧6 h的条件下所制备的样品具有较好的晶体结构、微观形貌和电化学性能。镁掺杂量在一定范围内变化不会影响磷酸钒锂本身的单斜结构。在3.0~4.8 V、0.1 C倍率下,Li3V1.70Mg0.45(PO4)3/C复合材料首次放电比容量高达154.4 mAh·g-1,首次库伦效率为94.32%,在不同倍率下循环25次之后的容量依然可以达到112.8 mAh·g-1。掺杂镁的样品与未掺杂的样品相比,容量和循环倍率性能均有了很大程度的提高。  相似文献   

13.
硫化物全固态锂金属电池以其高比能和高安全性得到了越来越多的关注,但是电解质与正负极极材料之间严重的界面问题仍然限制其进一步发展.为解决Li6PS5Cl固态电解质对金属锂不稳定的难点,许多工作提出引入合金负极、引入中间界面层以及电解质直接改性等策略,但是都和实际应用存在一定的差距.考虑到石榴石氧化物固态电解质Li6.4La3Zr1.4Ta0.6O12(LLZTO)具有较高的锂离子电导率和极好的材料稳定性,而Ag金属具有良好的导锂性,因此创新性地提出采用LLZTO与Ag的复合界面层来解决Li6PS5Cl全固态电池的金属负极界面问题,提高全电池的循环稳定性.研究了LLZTO和Ag简单分散复合、均匀分散包覆复合以及纳米球磨复合等不同组成的LLZTO–Ag复合界面层方式对Li6PS5Cl全固态锂金属电池负极界面的改善作用,并探究了优化后的全固态电池的电化学性...  相似文献   

14.
全钒氧化还原液流电池(简称钒电池)作为一种大型储能技术,因其具有安全性高、稳定性好、使用寿命长、设计灵活、对环境影响小等优点而受到广泛关注。然而,钒电池因为钒化合物溶解度和钒离子的稳定性,使其发展和商业化应用受到一定程度限制。本文为提高钒电池的容量、能量密度和高温稳定性,对硫磷混合酸体系钒电解液的主要成分与其性能影响进行研究。通过电解液的稳定性、电化学性能和电池性能测试与分析,研究表明硫磷混酸体系可明显改善五价钒电解液高温稳定性,在50℃时,稳定时间较同浓度硫酸体系延长68 h。但当磷酸浓度超过0.2 mol/L,会产生新的磷酸氧钒沉淀,并且原有的五氧化钒沉淀逐渐消失。当硫磷混合酸电解液浓度组成为钒离子浓度为2.0 mol/L、硫酸浓度3.0 mol/L、磷酸浓度0.15 mol/L时,可以在50℃稳定运行,经100次充放电,硫磷混酸电解液无任何沉淀产生,其比容量为16.9 Ah/L,能量密度21.5 Wh/L,库伦效率可达94.0%。  相似文献   

15.
通过对含有不同浓度镁杂质离子的电解液进行循环伏安测试、黏度测试及热稳定性测试,考察镁离子对电解液电化学性能及稳定性的影响。结果表明,当电解液中镁杂质离子浓度超过0.96g/L时,电解液黏度从0.89mm2/s增大至0.95mm2/s,电解液中钒离子扩散系数从(2.06~3.33)×10-6 cm2/s降低至(1.30~2.11)×10-6 cm2/s,导致电极反应速率和电极反应可逆性降低;同时电解液中出现钒离子大量沉淀现象,电解液稳定性降低,严重影响钒电池的正常运行。  相似文献   

16.
锂硫电池(LSB)凭借其超高的能量密度(2 600 Wh·kg-1),被认为是下一代储能系统的潜在候选者之一。然而,目前LSB的实际应用受到了多硫化锂(LiPSs)穿梭效应、电解质连续分解和锂枝晶生长等问题的限制。这些挑战主要与正极结构框架、锂负极的反应性以及在电极-电解质界面发生的氧化还原反应有关。设计良好的正极结构、新型电解质的开发和负极保护已被陆续研究,以期改善LSB的电化学性能。在本文中,将系统地讨论克服LSB挑战的相关研究进展,如正极硫载体设计和制备、新型电解质的开发、隔膜的改性/功能层插层设计、锂负极的保护及LSB产业化方面的最新研究进展。最后,为LSB的实际应用提出总结和展望。  相似文献   

17.
钒化合物具有较好电化学活性,有望用于提升钒电池电极电化学活性,但目前对于钒化合物在电解液中的稳定性及电化学行为的研究有待开展。因此,本文利用E-pH图、开路电位法、循环伏安法等方法,研究了V2O5、VO2、V2O3、NaV2O5、VN等钒化合物在酸性电解液中的稳定性及电化学行为。在稳定性方面,结合钒化合物的E-pH图、溶解试验以及开路电位分析,VO2、NaV2O5在钒电池电解液中不稳定,会发生快速溶解;V2O5在钒电池电解液中相对稳定,会发生缓慢溶解;V2O3和VN在钒电池电解液中较稳定,仅发生少量溶解。在电化学行为方面,结合钒化合物在2.0 mol·L-1 H2SO4、0.1 mol·L-1 V...  相似文献   

18.
锂离子电池因锂资源储量有限、分布不均及一定的安全问题,导致其在大型储能领域的应用受限.水系锌离子电池因其资源丰富、安全环保、易于组装以及价格低廉等优势在大规模储能领域具有极大前景.但是由于锌离子与正极材料基体具有较强的静电吸附作用,导致其动力学缓慢以及部分正极材料在水系电解液中存在溶解等问题,限制了水系锌离子电池的发展.在目前的正极材料中,磷酸钒盐因其结构稳定、电压平台高、功率密度高等特点受到研究者的关注.然而,磷酸钒盐作为水系锌离子电池正极材料时,较差的电子电导率和溶解问题,制约其循环稳定性和倍率容量.本文综述各类磷酸钒盐及其衍生物的物相结构、合成方法、储锌性能和储锌机制,归纳提高电化学性能的方法如构建纳米结构、调节电子结构、包覆导电材料、调控电解液等.最后,总结了磷酸钒盐储锌正极材料现阶段存在的挑战,并对其未来的发展方向提出了展望.  相似文献   

19.
采用溶胶凝胶法,以硫酸铝、异丙醇(IPA)为原料对Li Mn2O4进行包覆。合成了含2%(质量分数)Al2O3表面包覆的Li Mn2O4电极材料。利用场发射扫描电镜(FESEM)对制备材料的形貌进行表征。结果显示,异丙醇协助包覆后材料表面呈现均匀分布的Al2O3颗粒。在55℃,3.0~4.5 V,1C充放电测试表明,IPA协助包覆可以显著提高Li Mn2O4正极材料高温下的循环稳定性。以异丙醇协助的Al2O3包覆Li Mn2O4材料作为正极,100次循环容量保持率为87.3%,而未加异丙醇包覆后的Li Mn2O4材料100次循环容量保持率为82.2%,未经过包覆的材料只有74.1%。不同倍率恒流充放电测试结果表明,异丙醇协助包覆能够改善Li Mn2O4的倍率性能,在5C和10C的放电倍率下的放电比容量分别达到了102.1和91.0 m Ah·g-1。通过电感耦合等离子体质谱仪(ICP)测试样品在电解液中Mn的溶解浓度。结果显示,高温(55℃)储存20 d后,异丙醇协助包覆的Li Mn2O4材料中Mn在电解液中的浓度仅为58.7×10-6,远远低于未加异丙醇包覆的和未经过包覆的。  相似文献   

20.
富锂锰基正极材料x Li2Mn O3-(1-x)Li MO2(M=Ni,Co,Mn,0x1)具有放电比容量高(250 m Ah·g-1)、成本低、对环境友好等特点,是有潜力的下一代锂离子电池用正极材料。但是该材料的首次不可逆容量高、循环和倍率性能较差,尤其是充放电循环过程中放电中压不断降低,阻碍了其实际应用。研究者通过采用表面包覆、表面处理、元素掺杂以及制备特殊的形貌等方法,极大地提升了富锂锰基正极材料的电化学性能。然而,对该材料是固溶体还是两相纳米复合的结构存在争议。另外,对材料中的O元素和Mn元素是否可逆地参与电化学反应尚无定论。本文主要从材料结构、脱嵌锂机制和材料改性(表面包覆、表面处理、掺杂以及特殊形貌的材料制备)等几个方面综述了锂离子电池富锂锰基正极材料的研究进展,并提出了下一步的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号