首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
该文建立基于相似日模糊信息粒化和Elman神经网络的光伏短期出力区间预测模型。首先对原始序列进行相似日的选取,然后将提取的样本利用模糊信息粒化进行处理,确定预测区间的上下界,并结合Elman神经网络分别预测,构建区间预测模型。仿真结果表明,所提出的区间预测方法具有较高的预测精度和实用价值。  相似文献   

2.
光伏发电功率的预测方法目前分为点值预测和区间预测两类,但点值预测方法难以适应光伏功率的随机性和波动性,因此,该文构建一种基于集合经验模态分解(EEMD)和混沌蚁狮算法(ALOCO)的支持向量机(SVM)光伏功率区间短期预测模型。首先,通过灰色关联度筛选出不同环境条件的相似日样本集,并利用EEMD将光伏出力序列分解成不同的本征模态函数;然后,利用混沌蚁狮算法对SVM的误差惩罚因子C和核函数参数γ进行优化,并利用分位数回归法对光伏的输出功率进行短期区间预测;最后,通过算例数据验证所建立模型的有效性。  相似文献   

3.
将点值预测扩展为区间预测,利用光伏出力相似日样本中区间中点和区间半径进行预测,采用常规的BP神经网络算法、GM(1,1)灰色算法、支持向量机(SVM)算法分别预测,利用人群搜索算法(SOA)对各种区间预测的组合权值进行优化,并设定意愿系数将多目标优化转换为单目标优化.仿真结果表明,所提出的区间预测方法具有较高的预测精度...  相似文献   

4.
针对现有的区间预测在满足高覆盖率的同时区间宽度存在过宽的问题,提出一种基于信息熵变权区间组合和边界逼近的短期光伏功率区间预测方法。首先,对历史天气数据特征进行特征重组,并基于套索交叉的递归特征消除(LassoCV-RFE)算法对重组后的特征进行筛选。然后,采用动态贝叶斯网络模型和基于卷积长短期记忆网络的改进分位数回归模型(CNNLSTM-QH)分别预测光伏出力的置信区间,根据信息熵进行区间变权组合。最后,结合区间覆盖率和区间宽度指标,构建边界逼近函数和惩罚边界,对两个预测结果加权组合后的区间进行边界逼近。仿真结果表明:相比于一般的单一模型方法,所提方法能在95%、90%和85%的置信水平下分别减小21.86%、16.67%和14.93%的平均区间宽度,同时区间覆盖率也能满足对应的置信度要求。  相似文献   

5.
《可再生能源》2013,(7):11-16
分析了影响光伏发电出力的主要因素,建立了基于BP神经网络的光伏发电短期出力预测模型。利用光伏电站的出力数据和气象数据对BP神经网络进行训练,根据光伏出力影响因素的分析,将不同日类型的日发电功率数据进行处理,将其映射为日类型指数作为神经网络训练、预测的输入。文章建立的预测模型可以对不同天气类型下一天各时段的出力进行预测,预测结果与实测值的比较结果表明,该模型有比较准确的预测能力和较强的适用性。  相似文献   

6.
光伏发电短期预测在电力系统实时调度中具有重要意义。受诸多因素影响,光伏发电短期预测精度还无法达到光伏电站要求,对光伏并网调度带来较大影响。针对这一问题,提出了基于极限学习机(ELM)的光伏发电短期预测校正方法。说明了光伏发电短期预测中的误差特征,并利用提出的校正方法对原来光伏发电短期预测结果进行了优化。通过与其他方法的对比,验证了此方法的有效性,说明了论文方法能够有效提高光伏发电短期预测精度。  相似文献   

7.
针对光伏发电出力随机变化,提出一种PCA-GA-Elman模型对光伏有功功率进行短期预测方法,用于提高电网对可再生能源的调度能力。该方法首先采用主成分分析法对原始数据进行降维;接着使用遗传算法对Elman神经网络的反馈因子进行寻优;然后利用训练集构造PCA-GA-Elman预测模型;最后在对比仿真中验证所提方法的有效性。  相似文献   

8.
提出一种基于改进集成经验模态分解(MEEMD)和拟仿射变换(QUATRE)优化双向长短期记忆神经网络(BILSTM)的光伏出力区间预测模型。通过主成分分析法(PCA)对时间序列进行降维处理,利用K-均值算法将降维数据分成3种类型气象数据;然后采用MEEMD对每类光伏出力序列进行分解,将其输入QUATRE优化BILSTM神经网络和核密度估计算法(KDE)联合构建的短期光伏出力区间预测模型。最后基于宁夏光伏电站实例仿真评估模型区间预测性能,实验结果表明该模型可生成高水平光伏预测区间,能够为电力系统经济稳定运行提供可靠的决策保障。  相似文献   

9.
针对高比例光伏接入电网时,光伏出力的波动性会严重影响电力系统稳定运行的问题提出一种基于平均影响值与改进粒子群优化神经网络的组合式光伏出力短期预测模型。首先,采用直接预测法,选取总辐射量、直接辐射量、散射量、相对湿度、气温、风速和降雨量7个影响光伏出力的因素,构建MIV-PSO-BPNN模型,基于Rapid Miner数据挖掘得出降雨量对光伏出力平均影响值为0.0099,影响较小,不作为模型输入变量。然后,用改进PSO优化算法对BPNN的权值与阈值进行优化。最后,利用上海浦东国际机场T2-2光伏电站数据进行验证,结果表明MIV-PSO-BPNN模型对光伏出力预测有效,在实际中有一定应用价值。  相似文献   

10.
针对光伏发电系统受环境因素影响较大、预测精度低等问题,提出了一种基于鲸鱼算法优化双向长短期记忆神经网络(WOA-BiLSTM)的光伏出力短期预测模型。利用鲸鱼算法(WOA)进行参数寻优,完成对双向长短期记忆神经网络(BiLSTM)模型最优超参数的选择,并以华东某光伏电站的历史光伏数据进行了验证。预测结果显示:相较于长短期记忆神经网络(LSTM)与BiLSTM预测模型,WOA-BiLSTM模型可以在一定程度上提高预测的精度。  相似文献   

11.
针对光伏发电中因多种随机因素引起的输出功率不确定性问题,文章结合思维进化算法和BP神经网络算法建立了光伏发电功率的短期预测模型,模型的输入因子为大气温度、辐照度、风速和历史输出序列。根据季节变化采用4个预测单元对预测模型进行训练和电站出力预测,并通过仿真对所提算法的有效性和准确性进行验证。结果表明,MEA-BP模型能有效降低BP网络模型的预测误差。  相似文献   

12.
对光伏发电功率进行准确预测,可减弱其并入电网的波动性,有利于电网对新能源发电的调度。基于主成分分析法和局部均值分解相结合的鲸鱼优化算法,构造优化后的极限学习机模型,并使用该模型对光伏发电短期功率进行预测。先用主成分分析法对影响光伏发电功率的因素进行筛选,并使用局部均值分解对选取的主要影响因素及发电功率序列数据进行分解;然后基于子序列使用鲸鱼优化建立极限学习机模型;最后将各序列短期预测结果叠加获得光伏发电短期功率预测结果。通过仿真验证及对比分析,说明该预测方法具有较高的预测精准度。  相似文献   

13.
针对目前光伏发电预测的预测耗时和预测精度不足等问题,提出了一种基于皮尔逊相关性分析、改进的麻雀算法(tGSSA)和深度极限学习机(DELM)的组合预测方法。该方法首先通过皮尔逊相关性分析方法对影响光伏出力的主要因素进行筛选,然后采用黄金正弦搜索策略、自适应t分布和动态选择策略来增强麻雀算法的全局搜索能力和局部寻优能力,最后利用tGSSA群智能优化算法对DELM中的输入权重和偏置进行寻优,在得到最优输入权重和偏置的情况下对光伏发电功率进行预测。以澳大利亚某光伏站一年数据按季节划分后进行预测研究,将本文模型与DELM,SSA-DELM,GA-DELM,ABC-DELM,WOA-DELM进行预测对比,结果表明,相比于其他算法改进模型和传统模型,tGSSA-DELM在预测精度、预测稳定性和工作效率中具有较大优势,具有更强的适用性。  相似文献   

14.
针对非晴空条件下光伏发电短期功率预测精度不高的问题,提出一种基于自适应混合核的相关向量机光伏发电短期功率预测方法.通过构造混合核函数和自适应寻优核参数来增强预测模型的泛化和学习能力,建立对多尺度多模态变化数据的映射关系,实现光伏发电功率随机性波动规律的机器学习和有效捕捉.采用关联系数筛选历史相似日,通过历史相似日数据自...  相似文献   

15.
针对传统循环神经网络(RNN)长时间使用会存在梯度爆炸以及在处理长时间序列时容易忽略重要时序信息的不足,本文提出一种结合注意力机制(Attention)的双重选择循环神经网络(Double selection Recurrent Neural Network, DsRNN),面向短期光伏发电功率预测的模型。首先,引入气象影响因子数据并根据相关性大小进行修正处理,改变原有单一输入源建立新的数据集;然后,融合注意力机制,提取光伏发电功率的时序特征,挖掘数据之间的深层联系;最终,实现对分布式光伏发电进行较有效、精准的短期功率预测。仿真结果表明:气象数据的输入以及DsRNN光伏发电功率预测模型的使用能完成较高精度的预测任务,误差更小。  相似文献   

16.
王巍 《可再生能源》2019,(5):670-675
文章提出了一种基于人工神经网络(ANN)和模拟集成(AnEn)的短期光伏发电预测方法。该方法首先利用数值天气预报模型,以计算天文变量为输入,对光伏发电站点进行72 h的确定性和概率预测;然后分别运用基于ANN,AnEn和ANN+AnEn联合模型方法对3个光伏发电站点进行预测,并进一步利用模拟4 450个光伏电站的综合数据验证了该模型方法的可扩展性;最后利用美国国家大气研究中心(NCAR)的黄石超级计算机,在1个节点(32核)~4 450个节点(141 140核)内测试了该方法的并行运算处理能力。实验结果表明,基于ANN+AnEn联合模型方法可以获得最佳结果,同时证明了该方法适用于大规模并行计算。  相似文献   

17.
为了提高电网运行的稳定性和改善电网的节能调度,针对目前单一模型处于不同天气状况时,预测精度难以达到最优的状况,文章提出了一种基于K-means分层聚类的TCN-GRU和长短期记忆网络(LSTM)动态组合光伏短期功率预测。利用K-means算法进行二次聚类,将天气类型分为晴天(A1)、多云(A2)、阴天(A3)、雨天(A4);通过时间卷积网络(TCN)提取数据的时序特征,并结合门控循环单元(GRU)建立出融合提取时序特征模块的TCN-GRU结构;TCN-GRU与LSTM神经网络动态组合后,通过弹性网络(ElasticNet)回归选择最佳输出权重得到最终预测值;基于江苏某地区的光伏发电功率数据及对应的气象数据对文章所提出的方法进行验证。在4种天气状况下,通过与其他模型预测结果进行比较,文章提出的动态组合模型预测精度更高。  相似文献   

18.
《可再生能源》2019,(11):1595-1602
由于太阳辐照度及其他气象会随时发生变化,导致光伏电站输出功率具有可变性和不确定性,这将会对电网的安全运行造成重大影响。文章研究了影响光伏电站输出功率的几种气象因素,提出了一种基于小波包与最小二乘支持向量机(LSSVM)的短期光伏电站输出功率预测方法。首先,利用小波包将原始光伏电站输出功率,以及太阳辐照度、环境温度、环境湿度等气象因素进行分解,得到基频信号和多层高频信号;然后,利用最小二乘支持向量机所具有的处理小样本数据和解决非线性函数的能力,将得到的基频信号和多层高频信号作为最小二乘支持向量机的输入变量;最后,将不同尺度的输出结果进行叠加、合成,得到原始光伏电站输出功率的预测值。仿真结果表明,与传统的最小二乘支持向量机预测法、BP神经网络预测法,以及EMD与LSSVM相结合的预测方法相比,文章预测方法的预测精度较高,可以有效地预测光伏电站输出功率。  相似文献   

19.
针对光伏发电系统短期预测影响因素较多、预测精度较低、稳定度不高等问题,提出一种基于动态时间弯曲(DTW)和变分模态分解(VMD)的粒子群(PSO)优化的BP神经网络光伏发电预测方法。首先使用动态时间弯曲算法对光伏发电功率及影响因素的数据进行测算得到DTW值,再根据DTW值选择对光伏发电功率影响较大的辐射度作为主要影响因素,然后利用变分模态分解将影响因素及光伏发电功率进行分解,降低数据的波动性和非平稳性。运用粒子群优化的BP神经网络对各分量进行预测,然后将预测结果进行叠加,叠加所得结果即为最后预测结果。在Matlab中对该方法和其他神经网络进行算例验证和误差分析,结果表明采用该方法预测结果精度高,稳定性好。  相似文献   

20.
针对传统循环神经网络(RNN)长时间使用会存在梯度爆炸以及在处理长时间序列时容易忽略重要时序信息的不足,本文提出一种结合注意力机制(Attention)的双重选择循环神经网络(Double selection Recurrent Neural Network,DsRNN),面向短期光伏发电功率预测的模型。首先,引入气象影响因子数据并根据相关性大小进行修正处理,改变原有单一输入源建立新的数据集;然后,融合注意力机制,提取光伏发电功率的时序特征,挖掘数据之间的深层联系;最终,实现对分布式光伏发电进行较有效、精准的短期功率预测。仿真结果表明:气象数据的输入以及DsRNN光伏发电功率预测模型的使用能完成较高精度的预测任务,误差更小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号