首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fillets of fall run coho salmon from each of the Great Lakes were analyzed for pesticides and industrial compounds. PCBs were the dominant contaminant in all samples ranging from trace concentrations in Lake Superior to 1.74 μg/kg in Lake Ontario. Compounds which have been banned or restricted were detected in most samples. These include PCB, DDT, chlordane, dieldrin, toxaphene, endrin, lindane, and heptachlor-epoxide. The herbicide, dacthal, was detected in samples from Lakes Michigan, Huron, and Erie. Comparison of 1984 coho salmon with those collected in 1980 through 1983 indicates that concentrations of PCB and DDT in coho from Lakes Erie and Michigan have declined, following first order loss kinetics. Dieldrin concentrations in Lake Michigan coho have also declined following first order loss kinetics.  相似文献   

2.
In this paper new maps are presented of mean circulation in the Great Lakes, employing long-term current observations from about 100 Great Lakes moorings during the 1960s to 1980s. Knowledge of the mean circulation in the Great Lakes is important for ecological and management issues because it provides an indication of transport pathways of nutrients and contaminants on longer time scales. Based on the availability of data, summer circulation patterns in all of the Great Lakes, winter circulation patterns in all of the Great Lakes except Lake Superior, and annual circulation patterns in Lakes Erie, Michigan, and Ontario were derived. Winter currents are generally stronger than summer currents, and, therefore, annual circulation closely resembles winter circulation. Circulation patterns tend to be cyclonic (counterclockwise) in the larger lakes (Lake Huron, Lake Michigan, and Lake Superior) with increased cyclonic circulation in winter. In the smaller lakes (Lake Erie and Lake Ontario), winter circulation is characterized by a two-gyre circulation pattern. Summer circulation in the smaller lakes is different; predominantly cyclonic in Lake Ontario and anticyclonic in Lake Erie.  相似文献   

3.
Lipid concentrations of Bythotrephes cederstroemi were compared among three Great Lakes, Erie, Huron, and Michigan, in an effort to investigate the phenotypic plasticity in size displayed among the lakes. Four developmental stages were measured in Lakes Erie and Huron and two stages were studied in Lake Michigan. With a gravimetric extraction method, the total lipid concentration range (μg lipid μg dry weight−1, expressed as percent) for Bythotrephes was estimated to be 10–19%. Statistically significant differences were found in lipid concentrations of Bythotrephes among lakes and developmental stages. Lake Erie had significantly higher lipid concentration values than Lake Huron for stages 2 through 4, and had similar values to Lake Michigan for the analyzed stages 1 and 4. The first instar had indistinguishable lipid concentrations among Lakes Erie, Huron,and Michigan. Even though animals from Lake Erie were significantly smaller, the data suggest that they were not less well nourished. We hypothesize that selective mortality imposed by visual predators on larger Bythotrephes and the lack of deep water refuges in Lake Erie has encouraged the smaller size of Bythotrephes found there in comparison to those found in Lakes Huron and Michigan.  相似文献   

4.
Spring and summer open-water crustacean zooplankton communities were examined across all five Laurentian Great Lakes from 1997 to 2016. Spring communities were dominated by calanoid (lakes Superior, Huron and Michigan) or cyclopoid (lakes Erie and Ontario) copepods. Volumetric biomass of summer communities increased along an assumed trophic gradient (Superior, Huron, Michigan, Ontario; eastern, central and western Erie), as did dominance by cyclopoids and cladocerans. Over the time series of the study, summer communities in lakes Michigan, Huron and Ontario shifted towards greater dominance by calanoids and greater similarity with Lake Superior. Trajectories of changes were different; however, reductions in cladocerans accounted for most of the change in lakes Michigan and Huron while reductions in cyclopoids and increases in Leptodiaptomus sicilis were behind the changes in Lake Ontario. Shifts in the predatory cladoceran community in Lake Ontario from Cercopagis pengoi to occasional dominance by Bythotrephes longimanus, a species much more vulnerable to planktivory, as well as the appearance of Daphnia mendotae in a daphnid community previously consisting almost exclusively of the smaller Daphnia retrocurva, suggest impacts of reduced vertebrate predation. In contrast, strong correlations between cladocerans and chlorophyll in lakes Michigan and Huron point to the possible importance of bottom-up forces in those lakes. Large interannual shifts in cladoceran community structure in the central and eastern basins of Lake Erie suggest intense but variable vertebrate predation pressure. The zooplankton communities of lakes Huron, Michigan and Ontario may be approaching a historic community structure represented by Lake Superior.  相似文献   

5.
The Laurentian Great Lakes are North America's largest water resource, and include six large water bodies (Lakes Superior, Michigan, Huron, Erie, Ontario, and Georgian Bay), Lake St. Clair, and their connecting channels. Because of the relatively small historical variability in system lake levels, there is a need for realistic climate scenarios to develop and test sensitivity and resilience of the system to extreme high lake levels. This is particularly important during the present high lake level regime that has been in place since the late 1960s. In this analysis, we use the unique climate conditions which resulted in the 1993 Mississippi River flooding as an analog to test the sensitivity of Great Lakes hydrology and water levels to a rare but actual climate event. The climate over the Upper Mississippi River basin was computationally shifted, corresponding to a conceptual shift of the Great Lakes basin 10̊ west and 2̊ south. We applied a system of hydrological models to the daily meteorological time series and determined daily runoff, lake evaporation, and net basin water supplies. The accumulated net basin supplies from May through October 1993 for the 1993 Mississippi River flooding scenario ranged from a 1% decrease for Lake Superior to a large increase for Lake Erie. Water levels for each lake were determined from a hydro-logic routing model of the system. Lakes Michigan, Huron, and Erie were most affected. The simulated rise in Lakes Michigan and Huron water levels far exceeded the historically recorded rise with both lakes either approaching or setting record high levels. This scenario demonstrates that an independent anomalous event, beginning with normal lake levels, could result in record high water levels within a 6- to 9-month period. This has not been demonstrated in the historical record or by other simulation studies.  相似文献   

6.
With the large Diporeia declines in lakes Michigan, Huron, and Ontario, there is concern that a similar decline of Mysis diluviana related to oligotrophication and increased fish predation may occur. Mysis density and biomass were assessed from 2006 to 2016 using samples collected by the Great Lakes National Program Office's biomonitoring program in April and August in all five Great Lakes. Summer densities and biomasses were generally greater than spring values and both increased with bottom depth. There were no significant time trends during these 10–11 years in lakes Ontario, Michigan, or Huron, but there was a significant increase in Lake Superior. Density and biomass were highest in lakes Ontario and Superior, somewhat lower in Lake Michigan, and substantially lower in Lake Huron. A few Mysis were collected in eastern Lake Erie, indicating a small population in the deep basin of that lake. On average, mysids contributed 12–18% (spring-summer, Michigan), 18–14% (spring-summer, Superior), 30–13% (spring-summer, Ontario), and 3% (Huron) of the total open-water crustacean biomass. Size distributions consisted of two peaks, indicating a 2-year life cycle in all four of the deep lakes. Mysis were larger in Lake Ontario than in lakes Michigan, Superior, and Huron. Comparisons with available historic data indicated that mysid densities were higher in the 1960s–1990s (5 times higher in Huron, 2 times higher in Ontario, and around 40% higher in Michigan and Superior) than in 2006–2016.  相似文献   

7.
A Great Lakes hydrologic response model was used to study the temporal effects of St. Clair River dredging on Lakes St. Clair and Erie water levels and connecting channel flows. The dredging has had a significant effect on Great Lakes water levels since the mid-1980s. Uncompensated dredging permanently lowers the water levels of Lakes Michigan and Huron and causes a transitory rise in the water levels of Lakes St. Clair and Erie. Two hypothetical dredging projects, each equivalent to a 10 cm lowering of Lakes Michigan and Huron, were investigated. This lowering is approximately half the effect of the 7.6 and 8.2 meter dredging projects. In the first case the dredging was assumed to occur over a single year while in the second it was spread over a 2-year period. The dredging resulted in a maximum rise of 6 cm in the downstream levels of Lakes St. Clair and Erie. The corresponding increase in connecting channel flows was about 150 m3s?1. The effects were found to decrease over a 10-year period with a half-life of approximately 3 years. The maximum effects on Lake Erie lagged Lake St. Clair by about 1 year.  相似文献   

8.
Despite increasing recognition of the importance of invertebrates, and specifically crayfish, to nearshore food webs in the Laurentian Great Lakes, past and present ecological studies in the Great Lakes have predominantly focused on fishes. Using data from many sources, we provide a summary of crayfish diversity and distribution throughout the Great Lakes from 1882 to 2008 for 1456 locations where crayfish have been surveyed. Sampling effort was greatest in Lake Michigan, followed by lakes Huron, Erie, Superior, and Ontario. A total of 13 crayfish species occur in the lakes, with Lake Erie having the greatest diversity (n = 11) and Lake Superior having the least (n = 5). Five crayfish species are non-native to one or more lakes. Because Orconectes rusticus was the most widely distributed non-native species and is associated with known negative impacts, we assessed its spread throughout the Great Lakes. Although O. rusticus has been found for over 100 years in Lake Erie, its spread there has been relatively slow compared to that in lakes Michigan and Huron, where it has spread most rapidly since the 1990s and 2000, respectively. O. rusticus has been found in both lakes Superior and Ontario for 22 and 37 years, respectively, and has expanded little in either lake. Our broad spatial and temporal assessment of crayfish diversity and distribution provides a baseline for future nearshore ecological studies, and for future management efforts to restore native crayfish and limit non-native introductions and their impact on food web interactions.  相似文献   

9.
PCB concentrations were measured in the Laurentian Great Lakes of North America in the Spring of 1993. Quality control criteria were met for 97% of the dissolved phase samples and 90% of the particulate phase samples. Data are reported as total PCBs and as homolog groups for both of the operationally-defined phases at a 0.7 μM cutoff. Detection limit estimates were 21 pg/L for dissolved phase and 23 pg/L for particulate phase total PCBs, based on a sample volume of 190 L. Total PCB concentrations ranged from 100 pg/L in Lake Superior to 1.6 ng/L in the western basin of Lake Erie. Lakes Michigan and Ontario had the highest lakewide average total PCB concentrations, followed by Lake Huron, and then Lake Superior. Lakewide averaging across the three basins of Lake Erie was too variable to be useful.  相似文献   

10.
Residues of octachlorostyrene (OCS) and related polychlorinated compounds including isomers of heptachloro-, hexachloro-, and pentachlorostyrene; hexachlorobenzene, pentachlorobenzene, isomers of tetrachloro- and trichlorobenzene; and hexachlorobutadiene have been quantitated by multiple-ion-detection gas chromatography-mass spectrometry in Great Lakes fish collected between 1974 and 1980. The results show that the two upper lakes, Superior and Michigan, do not appear to have residues of OCS greater than 5 ng/g, while residues in the lower lakes, Huron, Ontario, and Erie, are as high as 400 ng/g. A selected tributary to Lake Erie has been shown to contain very high levels of all of the chemicals studied which suggests one possible source of chlorostyrenes in the Great Lakes.  相似文献   

11.
The European cladoceran, Bythotrephes cederstroemi (Schödler), recently invaded the Laurentian Great Lakes. Based on recent zooplankton records, it most likely appeared first in 1984 in Lakes Ontario, Erie, and Huron, and in 1985 in Lake Michigan. It has yet to be reported from Lake Superior. This species is a relatively large-bodied predatory form that possesses a long, caudal, latterally barbed spine. B. cederstroemi spines and spine fragments were found in the upper fractions (predominantly 0–4 cm) of 35 sediment cores collected from seven areas of deposition in the eastern basin of Lake Erie. All remains were well preserved and easy to identify. Very few to 0 spines were found in core depths greater than 4 cm suggesting that the invasion of this species has resulted in a new, readily distinguishable time horizon marker.  相似文献   

12.
An algorithm that utilizes individual lake hydro-optical (HO) models has been developed for the Great Lakes that uses SeaWiFS, MODIS, or MERIS satellite data to estimate concentrations of chlorophyll, dissolved organic carbon, and suspended minerals. The Color Producing Agent Algorithm (CPA-A) uses a specific HO model for each lake. The HO models provide absorption functions for the Color Producing Agents (CPAs) (chlorophyll (chl), colored dissolved organic matter (as dissolved organic carbon, doc), and suspended minerals (sm)) as well as backscatter for the chlorophyll, and suspended mineral parameters. These models were generated using simultaneous optical data collected with in situ measurements of CPAs collected during research cruises in the Great Lakes using regression analysis as well as using specific absorption and backscatter coefficients at specific chl, doc, and sm concentrations. A single average HO model for the Great Lakes was found to generate insufficiently accurate concentrations for Lakes Michigan, Erie, Superior and Huron. These new individual lake retrievals were evaluated with respect to EPA in situ field observations, as well as compared to the widely used OC3 MODIS retrieval. The new algorithm retrievals provided slightly more accurate chl values for Lakes Michigan, Superior, Huron, and Ontario than those obtained using the OC3 approach as well as providing additional concentration information on doc and sm. The CPA-A chl retrieval for Lake Erie is quite robust, producing reliable chl values in the reported EPA concentration ranges. Atmospheric correction approaches were also evaluated in this study.  相似文献   

13.
The Great Lakes National Program Office of the U.S. EPA has been conducting biological monitoring of the Laurentian Great Lakes since 1983. This paper presents synoptic survey data of phytoplankton communities from all five lakes. These communities were highly diverse, each lake typi-cally supporting over 100 species during both the spring and summer surveys. Much of that diversity was contributed by diatoms, which dominated the plankton of all lakes except Lake Superior in the spring. Summer communities shifted away from diatoms, toward chrysophytes in the upper lakes and chloro-phytes in the lower lakes. Ordination analyses indicated the close similarity of communities in the upper lakes, in particular Lakes Huron and Michigan, and a diverse range of communities in Lake Erie. Floristically, Lake Ontario was fundamentally different from all other lakes.  相似文献   

14.
In the early 1990s, herring gulls (Larus argentatus) were collected in 15 breeding colonies throughout the Great Lakes basin and in two reference colonies on Lake Winnipeg and the Bay of Fundy. Organochlorine and metal concentrations, and stable isotope ratios (15N/14N and 13C/12C) were measured in their tissues, and we qualitatively assessed their diet. Breast muscle δ15N suggested that adults fed on planctivorous or insectivorous fish at six colonies, on piscivorous fish at four, and at a lower trophic level at the remaining three. The concentrations of Co, Ni, Al, Cr, Sn, Fe, and Pb in kidneys of adults suggested anthropogenic enrichment in the Great Lakes basin. Concentrations of contaminants were highest most often in tissues of gulls from Lake Ontario and northern Lake Michigan colonies. Concentrations of Pb in adults from Hamilton Harbour and the Detroit River, and of Se in adults from the southern Lake Huron colony, were similar to published toxicity thresholds. Tissue levels of Cd have increased, while those of Pb have decreased markedly since 1983. DDE, dieldrin, mirex, and ΣPCB concentrations in livers collected from nine of these colonies revealed declines of 16 to 87% at most locations since the early 1980s. 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents were highest in adults from the offshore colonies in western Lake Erie and northern Lake Michigan, where gulls feed on piscivorous fish, and were driven by non-ortho PCBs. There was evidence of an unusually high bioavailablity of organochlorines, especially dieldrin, near the northern Lake Michigan colony during the period of chick growth, and of an ongoing loading of mercury to eastern Lake Ontario. Tissues of adult gulls from colonies on Lakes Ontario, Erie, and Michigan best reflect local conditions whereas those from Lake Superior and northern Lake Huron reflect contaminants accumulated from time spent on the lower lakes.  相似文献   

15.
Phosphorus load estimates have been updated for all of the Great Lakes with an emphasis on lakes Superior, Michigan, Huron and Ontario for 1994–2008. Lake Erie phosphorus loads have been kept current with previous work and for completeness are reported here. A combination of modeling and data analysis is employed to evaluate whether target loads established by the Great Lakes Water Quality Agreement (GLWQA, 1978, Annex 3) have been and are currently being met. Data from federal, state, and provincial agencies were assembled and processed to yield annual estimates for all lakes and sources. A mass-balance model was used to check the consistency of loads and to estimate interlake transport. The analysis suggests that the GLWQA target loads have been consistently met for the main bodies of lakes Superior, Michigan and Huron. However, exceedances still persist for Saginaw Bay. For lakes Erie and Ontario, loadings are currently estimated to be at or just under the target (with some notable exceptions). Because interannual variability is high, the target loads have not been met consistently for the lower Great Lakes. The analysis also indicates that, because of decreasing TP concentrations in the lakes, interlake transport of TP has declined significantly since the mid-1970s. Thus, it is important that these changes be included in future assessments of compliance with TP load targets. Finally, detailed tables of the yearly (1994–2008) estimates are provided, as well as annual summaries by lake tributary basin (in Supplementary Information).  相似文献   

16.
A detailed review of historical literature and museum data revealed that flathead catfish were not historically native in the Great Lakes Basin, with the possible exception of a relict population in Lake Erie. The species has invaded Lake Erie, Lake St. Clair, Lake Huron, nearly all drainages in Michigan, and the Fox/Wolf and Milwaukee drainages in Wisconsin. They have not been collected from Lake Superior yet, and the temperature suitability of that lake is questionable. Flathead catfish have been stocked sparingly in the Great Lakes and is not the mechanism responsible for their spread. A stocking in 1968 in Ohio may be one exception to this. Dispersal resulted from both natural range expansions and unauthorized introductions. The invasion is ongoing, with the species invading both from the east and the west to meet in northern Lake Michigan. Much of this invasion has likely taken place since the 1990s. This species has been documented to have significant impacts on native fishes in other areas where it has been introduced; therefore, educating the public not to release them into new waters is important. Frequent monitoring of rivers and lakes for the presence of this species would detect new populations early so that management actions could be utilized on new populations if desired.  相似文献   

17.
Analyses of coho salmon from each of the Great Lakes by a single laboratory produced residue data on the accumulation of environmental contaminants which have been banned, severely restricted, or are currently permitted in the basin. Coho salmon from Lake Superior contained only trace amounts or low levels of most toxic substances quantified; Lake Erie fish were contaminated with low levels of a number of pesticides and industrial compounds; relatively higher residues were detected in coho from Lake Huron and Lake Michigan; and the highest concentrations for a number of compounds were found in fillets from coho from Lake Ontario. Contaminant concentrations in migratory coho salmon indicate open lake contaminant problems rather than point source or nearshore conditions. Tissue residues were less than USFDA action levels, used by many agencies in assessing the severity of fish contaminant problems. Only mirex concentrations in fish collected from Lake Ontario exceeded a USFDA action level. The data reported in this study generally agree with recent findings from individual state contaminant monitoring programs. Problems with varying analytical and sampling techniques preclude direct comparisons with previously published data of other studies.  相似文献   

18.
Compared to the Great Lakes, their connecting channels are relatively understudied and infrequently assessed. To address this gap, we conducted a spatially-explicit water quality assessment of two connecting channels, the St. Marys River and the Lake Huron-Lake Erie Corridor (HEC) in 2014–2016. We compared the condition of the channels to each other and to the up- and downriver Great Lakes with data from an assessment of the Great Lakes nearshore. In the absence of channel-specific thresholds, we assessed the condition of the area of each channel as good, fair, or poor by applying the most protective water quality thresholds for the downriver lake. Condition of the St. Marys River was rated mostly fair for total phosphorus (TP, 56% of the area) and mostly good (61% of the area) for chlorophyll a. Area-weighted mean concentrations of these parameters were intermediate to Lake Superior and Lake Huron. Unlike Lake Superior and Lake Huron, a large proportion (97%) of the area of the St. Marys River was in poor condition for water clarity based on Secchi depth. Area-weighted mean concentrations of TP and chlorophyll a in the HEC were more like Lake Huron than Lake Erie. For these indicators, most of the area of the HEC was rated good (81% and 86%, respectively). Interpretation of assessment results is complicated by variation in thresholds among and within lakes. Appropriate thresholds should align with assessment objectives and in the case of connecting channels be at least as protective as thresholds for the downriver lake.  相似文献   

19.
The Chippewa Ottawa Resource Authority (CORA) in Sault Ste. Marie, Michigan, has been monitoring contaminant concentrations in the fillet portions of fish from the 1836 treaty-ceded waters of lakes Superior, Huron, and Michigan since 1991. The goal is to provide up to date consumption advice for their CORA member tribes. For the first time since the program started, CORA has included fatty acid analysis in 2016 monitoring of fish in Lake Superior. Ten species were targeted by CORA based on 25 years of experience and regular discussions with Anishinaabe fish consumers. This paper reports these results and presents some preliminary discussion of the consequences for consumption advice for the CORA member tribes who inhabit the Great Lakes region. Six of the species were sampled from Lake Huron and Lake Superior and four were sampled from supermarkets. Wild caught fish are an important link to the culture of Great Lakes Native American tribes and important sources of food and omega-3 polyunsaturated fatty acids (PUFA N-3). While some PUFA N-3 data from the Great Lakes is available, this dataset provides an important supplement and is specific to the 1836-treaty ceded waters of CORA. This paper confirms the presence of PUFA N-3s in Great Lakes fish traditionally harvested by the CORA tribes.  相似文献   

20.
Separate trophic scales and indices are developed for two of the most significant symptoms of eutrophication: surface water quality and hypolimnetic dissolved oxygen depletion. The scales are made comparable by expressing them in dimensionless form with a lower bound of zero and a mesotrophic range from 5 to 10. In this way, the two symptoms can be compared and their relative importance judged. This is done for the Great Lakes with the result that for both scales Lakes Superior, Huron, and Michigan are classified as oligotrophic. However, while central and eastern Lake Erie and Lake Ontario are classified as mesotrophic in terms of surface water quality, they range from eutrophic (central Lake Erie) to oligotrophic (Lake Ontario) on the oxygen scale. This is because, although these lakes are similar in surface water quality, their hypolimnion thicknesses range from approximately 4 m for central Erie to 70 m for Lake Ontario. Because of its shallowness, western Lake Erie does not have a persistent oxygen problem. In terms of surface quality it is classified as eutrophic.We have attempted to relate the two scales by correlating surface primary production and areal depletion rate. The results indicate that for lakes of similar primary production, areal oxygen depletion is directly proportional to hypolimnion thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号