首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Metallurgica Materialia》1994,42(10):3451-3461
The effects of holes and notches on the ultimate tensile strength of a unidirectionally reinforced titanium matrix composite have been examined. During tensile loading, a narrow plastic strip forms ahead of the notch or hole prior to fracture, similar to that observed in thin sheets of ductile metals. Examination of the fibers following dissolution of the matrix indicates that essentially all the fibers within such a strip are broken prior to catastrophic fracture of the composite. The trends in notch-strength have been rationalized using a fracture mechanics-based model, treating the plastic strip as a bridged crack. The observations suggest that the bridging traction law appropriate to this class of composite is comprised of two parts. In the first, the majority of fibers are unbroken and the bridging stress corresponds to the unnotched tensile strength of the composite; in the second, the fibers are broken and the bridging stress is governed by the yield stress of the matrix, with some contribution derived from fiber pullout. This behavior has been modeled by a two-level rectilinear bridging law. The parameters characterizing the bridging law have been measured and used to predict the notch strength of the composite. A variation on this scheme in which the fracture resistance is characterized by an intrinsic toughness in combination with a rectilinear bridging traction law has also been considered and found to be consistent with the predictions based on the two-level traction law.  相似文献   

2.
《Acta Metallurgica》1985,33(11):2013-2021
Matrix fracture in brittle-matrix fiber composites is analyzed for composites that exhibit multiple matrix cracking prior to fiber failure and have purely frictional bonding between the fibers and matrix. The stress for matrix cracking is evaluated using a stress intensity approach, in which the influence of the fibers that bridge the matrix crack is represented by closure tractions at the crack surfaces. Long and short cracks are distinguished. Long cracks approach a steady-state configuration, for which the stress intensity analysis and a previous energy balance analysis are shown to predict identical dependence of matrix cracking stress on material properties. A numerical solution and an approximate analytical solution are obtained for smaller cracks and used to estimate the range of crack sizes over which the steady-state solution applies.  相似文献   

3.
This paper considers the problem of Mode I matrix cracks growing under either monotonic or cyclic loading in the presence of unidirectional, bridging fibers coupled to the matrix by friction. Scaling relations facilitate the presentation of exhaustive solutions for specimens of various shapes. Particularly simple results are found numerically for the ratio of the net to the applied crack tip intensity factor in monotonic loading or the ratio of their ranges in cyclic loading. Material properties that control how finite specimen size and applied stress level determine the relative strength of bridging are identified for monotonic and cyclic loading. Bending is shown to be important in edge notch specimens, even under uniform remote loading. Conditions are found for fracture surface contact during cyclic loading.  相似文献   

4.
The effects of interfacial microstructure/thickness on the strength and fatigue behavior of a model four-ply [75]4 Ti-15V-3Al-3Cr-3Sn/SiC (SCS-6) composite are examined in this article. Interfacial microstructure was controlled by annealing at 815 °C for 10, 50, or 100 hours. The reaction layer and coating thickness were observed to increase with increasing annealing duration. Damage initiation/propagation mechanisms were examined in as-received material and composites annealed at 815 °C for 10 and 100 hours. Fatigue behavior was observed to be dependent upon the stress amplitude. At high stress amplitudes, the failure was dominated by overload phenomena. However, at all stress levels, fatigue crack initiation occurred by early debonding and matrix deformation by stress-induced precipitation. This was followed by matrix crack growth and fiber fracture prior to the onset of catastrophic failure. Matrix shear failure modes were also observed on the fracture surfaces in addition to fatigue striations in the matrix. Correlations were also established between the observed damage modes and acoustic emission signals that were detected under monotonic and cyclic loading conditions.  相似文献   

5.
The tensile strengths of composites of 339 aluminum reinforced with either SAFFIL or KAOWOOL fibers are compared over the temperature range of 20°C to 300°C. For this type of composite, in which the discontinuous fibers are randomly oriented, the fibers perpendicular to the applied stress play a critical role, which in turn creates a dependence upon the interfacial bond strength. The KAOWOOL fibers form a strong interfacial bond so that tensile failure occurs either in the matrix at 300 °C or by fiber cleavage at 20°C. In the T5 condition, the SAFFIL interface is weaker than the matrix alloy so that failure occurs by delamination of the transverse fibers. Thus, although the SAFFIL fibers are 40 pct stronger than the KAOWOOL fibers, the T5 composites have the same ultimate tensile strengths. A T6 heat treatment promotes an interfacial reaction with magnesium. This strengthens the SAFFIL interface so that failure occurs primarily in the matrix, producing higher composite strengths. The reaction with the KAOWOOL fibers is so extensive that the matrix, and therefore the composite strength, is drastically decreased. When account is taken of the different fracture modes, together with the matrix strengths as determined by nanoindentation, the calculated values of composite strength are in good agreement with experiment.  相似文献   

6.
The tensile strengths of composites of 339 aluminum reinforced with either SAFFIL or KAOWOOL fibers are compared over the temperature range of 20 °C to 300 °C. For this type of composite, in which the discontinuous fibers are randomly oriented, the fibers perpendicular to the applied stress play a critical role, which in turn creates a dependence upon the interfacial bond strength. The KAOWOOL fibers form a strong interfacial bond so that tensile failure occurs either in the matrix at 300 °C or by fiber cleavage at 20 °C. In the T5 condition, the SAFFIL interface is weaker than the matrix alloy so that failure occurs by delamination of the transverse fibers. Thus, although the SAFFIL fibers are 40 pct stronger than the KAOWOOL fibers, the T5 composites have the same ultimate tensile strengths. A T6 heat treatment promotes an interfacial reaction with magnesium. This strengthens the SAFFIL interface so that failure occurs primarily in the matrix, producing higher composite strengths. The reaction with the KAOWOOL fibers is so extensive that the matrix, and therefore the composite strength, is drastically decreased. When account is taken of the different fracture modes, together with the matrix strengths as determined by nanoindentation, the calculated values of composite strength are in good agreement with experiment.  相似文献   

7.
Fatigue crack growth in fiber-reinforced metal-matrix composites is modeled based on a crack tip shielding analysis. The fiber/matrix interface is assumed to be weak, allowing interfacial debonding and sliding to occur readily during matrix cracking. The presence of intact fibers in the wake of the matrix crack shields the crack tip from the applied stresses and reduces the stress intensity factors and the matrix crack growth rate. Two regimes of fatigue cracking have been simulated. The first is the case where the applied load is low, so that all the fibers between the original notch tip and the current crack tip remain intact. The crack growth rate decreases markedly with crack extension, and approaches a “steady-state”. The second regime occurs if the fibers fail when the stress on them reaches a unique fiber strength. The fiber breakage reduces the shielding contribution, resulting in a significant acceleration in the crack growth rate. It is suggested that a criterion based on the onset of fiber failure may be used for a conservative lifetime prediction. The results of the calculations have been summarized in calibrated functions which represent the crack tip stress intensity factor and the applied load for fiber failure.  相似文献   

8.
Controlled processing of heavy alloys containing 88 to 97 pct W resulted in high sintered densities and excellent bonding between the tungsten grains and matrix. For these alloys, deformation and fracture behavior were studiedvia slow strain rate tensile testing at room temperature. The flow stress increased and the fracture strain decreased with increasing tungsten content. The tradeoff between strength and ductility resulted in a maximum in the ultimate tensile strength at 93 pct W. Microstructure variations, notably grain size, explain sintering temperature and time effects on the properties. During tensile testing, cracks formed on the surface of the specimens at tungsten-tungsten grain boundaries. The crack density increased with plastic strain and tungsten content. The surface cracks, though initially blunted by the matrix, eventually increased in density until catastrophic failure occurred. An empirical failure criterion was developed relating fracture to a critical value of the surface crack tip separation distance. Application of the model explains the effects of microstructural variables on tensile properties. Formerly Graduate Research Assistant at Rensselaer Polytechnic Institute.  相似文献   

9.
Microprobe analysis has been applied to the boundary layers between fibers and matrix to examine the phase composition in relation to mode of extrusion for composite materials based on iron and copper as reinforced with molybdenum and steel fibers. The width of the interaction zone varies from 2 to 4 µm. The phases correspond to the phase diagrams for these systems. Fractography indicates the failure mechanism for reinforced composites under conditions of stress and strain. At the points of application of shock loads, there is planar transverse fracture in the fibers by the cleavage mechanism. The peripheral layers are subject to viscous failure in the fibers with the formation of necks. Extrusion produces plastic strain uniform throughout the fiber length, and there are no breaks in the fibers, which provides conditions for complete realization of the strength of the reinforcing phase.  相似文献   

10.
Microprobe analysis has been applied to the boundary layers between fibers and matrix to examine the phase composition in relation to mode of extrusion for composite materials based on iron and copper as reinforced with molybdenum and steel fibers. The width of the interaction zone varies from 2 to 4 µm. The phases correspond to the phase diagrams for these systems. Fractography indicates the failure mechanism for reinforced composites under conditions of stress and strain. At the points of application of shock loads, there is planar transverse fracture in the fibers by the cleavage mechanism. The peripheral layers are subject to viscous failure in the fibers with the formation of necks. Extrusion produces plastic strain uniform throughout the fiber length, and there are no breaks in the fibers, which provides conditions for complete realization of the strength of the reinforcing phase.  相似文献   

11.
Unlike many eutectic composites, the Ni-W eutectic exhibits extensive ductility by slip. Furthermore, its properties may be greatly varied by proper heat treatments. Here results of studies of deformation in both monotonic and fatigue loading are reported. During monotonie deformation the fiber /matrix interface acts as a source of dislocations at low strains and an obstacle to matrix slip at higher strains. Deforming the quenched-plus-aged eutectic causes planar matrix slip, with the result that matrix slip bands create stress concentrations in the fibers at low strains. The aged eutectic reaches generally higher stress levels for comparable strains than does the as-quenched eutectic, and the failure strains decrease with increasing aging times. For the composites tested in fatigue, the aged eutectic has better high-stress fatigue resistance than the as-quenched material, but for low-stress, high-cycle fatigue their cycles to failure are nearly the same. However, both crack initiation and crack propagation are different in the two conditions, so the coincidence in high-cycle fatigue is probably fortuitous. The effect of matrix strength on composite performance is not simple, since changes in strength may be accompanied by alterations in slip modes and failure processes.  相似文献   

12.
Unlike many eutectic composites, the Ni-W eutectic exhibits extensive ductility by slip. Furthermore, its properties may be greatly varied by proper heat treatments. Here results of studies of deformation in both monotonic and fatigue loading are reported. During monotonie deformation the fiber /matrix interface acts as a source of dislocations at low strains and an obstacle to matrix slip at higher strains. Deforming the quenched-plus-aged eutectic causes planar matrix slip, with the result that matrix slip bands create stress concentrations in the fibers at low strains. The aged eutectic reaches generally higher stress levels for comparable strains than does the as-quenched eutectic, and the failure strains decrease with increasing aging times. For the composites tested in fatigue, the aged eutectic has better high-stress fatigue resistance than the as-quenched material, but for low-stress, high-cycle fatigue their cycles to failure are nearly the same. However, both crack initiation and crack propagation are different in the two conditions, so the coincidence in high-cycle fatigue is probably fortuitous. The effect of matrix strength on composite performance is not simple, since changes in strength may be accompanied by alterations in slip modes and failure processes.  相似文献   

13.
Study on notch fracture of TiAl alloys at room temperature   总被引:7,自引:0,他引:7  
In-situ observations of fracture processes combined with one-to-one observations of fracture surfaces and finite-element method (FEM) calculations are carried out on notched tensile specimens of two-phase polycrystalline TiAl alloys. The results reveal that most cracks are initiated and propagated along the interfaces between lamellae before plastic deformation. The driving force for the fracture process is the tensile stress, which is consistent with a previous study.[1] In specimens with a slit notch, most cracks are initiated directly from the notch root and extended along lamellar interfaces. The main crack can be stopped or deflected into a delamination mode by a barrier grain with a lamellar interface orientation deviated from the direction of crack propagation. In this case, new cracks are nucleated along lamellar interfaces of grains with favorable orientation ahead of the barrier grain. The main crack and a new crack are then linked by the translamellar cleavage fracture of the barrier grain with increasing applied load. In order to extend the main crack, further increases of the applied load are needed to move the high stress region into the ligament until catastrophic fracture. The FEM calculations reveal that the strength along lamellar interfaces (interlamellar fracture) is as low as 50 MPa and appreciably lower than the strength perpendicular to the lamellae (translamellar fracture), which shows a value higher than 120 MPa. This explains the reason why cracks nucleate and preferably extend along the lamellar interfaces.  相似文献   

14.
U-notched bend specimens of quenched and tempered AISI 4340 steel were deformed in the uncharged condition and after either precharging or dynamically charging with hydrogen. In the uncharged condition fracture initiated at the notch surface and progressed in mode II along a characteristic slip trace. For precharged specimens, strain to fracture was markedly reduced, cracks nucleated internally in a mode I manner and the crack progressed to the surface in mode II. Dynamic charging reduced plastic strain to essentially zero at crack nucleation, which occurred when the notch root stress reached the yield stress, and the crack grew by mode I. The results are compared to those on lower strength steels and are discussed in view of theories for hydrogen degradation of mechanical properties. Formerly with the Ohio State University Formerly with the Ohio State University  相似文献   

15.
The mode I fatigue crack growth behavior of a fiber reinforced metal matrix composite with weak interfaces is examined. In the longitudinal orientation, matrix cracks initially grow with minimal fiber failure. The tractions exerted by the intact fibers shield the crack tip from the applied stress and reduce the rate of crack growth relative to that in the unreinforced matrix alloy. In some instances, further growth is accompanied by fiber failure and a concomitant loss in crack tip shielding. The measurements are compared with model predictions, incorporating the intrinsic fatigue properties of the matrix and the shielding contributions derived from the intact fibers. The magnitude of the interface sliding stress inferred from the comparisons between experiment and theory is found to be in broad agreement with values measured using alternate techniques. The results also indicate that the interface sliding stress degrades with cyclic sliding, an effect yet to be incorporated in the model. In contrast, the transverse fatigue properties are found to be inferior to those of the monolithic matrix alloy, a consequence of the poor fatigue resistance of the fiber/matrix interface.  相似文献   

16.
针对实际工程中平行与交叉裂隙组合呈N字形裂隙岩体的稳定性问题,以N型组合节理为研究对象,开展了N型节理类岩体试件超声波检测试验和单轴静载试验,结合断裂力学理论,分析其强度特征、破坏特征和超声波波速衰减规律。结果表明:(1)N型组合节理类岩体的裂纹类型依次有翼型裂纹和次生倾斜裂纹,其扩展路径最终均趋向于主应力方向,不同于单节理下的裂纹发展规律;(2)当主节理倾角一定时,主次节理夹角和节理条数对试件的物理性能有一定的影响。各组合节理试件的波速衰减率范围在0.9%~9.6%之间,且15°和90°夹角节理试件的波速衰减最快,而60°夹角节理试件的衰减最慢;(3)组合节理类岩体的本构关系、峰值强度和破坏特征均表现出非线性特征。峰值强度分布规律基本服从M型分布,不同于单节理下的U型分布,其中15°、30°、45°、75°和90°夹角试件,以及完整试件呈准脆性破坏,其他夹角试件呈脆性破坏。  相似文献   

17.
A study has been made of fatigue crack growth through the magnesium alloy ZE41A and a composite of this alloy reinforced with alumina fibers. Crack growth rates were measured and failure mechanisms characterized for specimens with fibers parallel to the loading axis and for two off-axis orientations. Crack opening displacements and matrix and fiber strains in the vicinity of the crack tip were measured using the stereomaging technique. Crack growth rates through the composite were retarded by the fibers. For the composite with fibers at 22.5 deg to the loading axis, fibers were found to fracture in the composite at the same stress as measured for the fibers alone. Fiber fracture was the dominant growth-controlling mechanism for fibers oriented on and 22.5 deg to the loading axis, and little fiber pullout was observed. However, for crack growth through material with fibers oriented at 45 deg to the loading axis, crack growth was found to exist principally through the interface. Driving forces for cracks in interfaces were determined to be smaller than the applied δK. It was found that approximate fatigue crack growth rates through the composites could be predicted from those through the matrix by adjusting the tensile modulus. The upper and lower bounds of fatigue crack growth rate were also computed for the composite using a micromechanics-based model that incorporated observed failure mechanisms. A. McMINN, formerly with Southwest Research Institute, is with Failure Analysis Associates, Washington, D.C.  相似文献   

18.
《Acta Metallurgica Materialia》1990,38(12):2485-2492
The influence of the properties of the fibers, the matrix and the interface on the mechanical properties of fiber reinforced ceramics is analyzed by a simplified method previously developed by the authors for cohesive materials. The method parts from the assumption that crack displacements are known a priori and furnishes, in a simple and easy way, the fracture resistance curves versus crack length. The numerical results from the model are compared with experimental data from the literature. Finally, the model is used to assess the influence of fiber strength, interface slipping shear stress, fiber radius and fiber defect distribution on the fracture resistance and ductility of fiber-reinforced ceramic composites.  相似文献   

19.
20.
Thermally induced strains and stresses developed during direct-chill (DC) semicontinuous casting of high strength aluminum alloys can result in formation of micro-cracks in different locations of the billet. Rapid propagation of such micro-cracks in tensile thermal stress fields can lead to catastrophic failure of ingots in the solid state called cold cracking. Numerical models can simulate the thermomechanical behavior of an ingot during casting and after solidification and reveal the critical cooling conditions that result in catastrophic failure, provided that the constitutive parameters of the material represent genuine as-cast properties. Application of fracture mechanics, on the other hand, can help to derive the critical crack length leading to failure. In the present research work, the state of residual thermal stresses was determined in an AA7050 billet during DC casting by means of ALSIM5. Simulation results showed that in the steady-state conditions, large compressive stresses form near the surface of the billet in the circumferential direction, whereas in the center, the stresses are tensile in all directions. Magnitudes of von Mises effective stresses, the largest component of principal stresses and the fracture mechanics concepts, were then applied to investigate the crack susceptibility of the billet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号