首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
单向聚酯帘线/橡胶复合材料的疲劳损伤机理   总被引:1,自引:0,他引:1  
利用较X射线技术和扫描电子显微镜技术,研究了在周期载荷下单向聚酯帘线/橡胶复合材料的疲劳机理。结果表明,在高应务下,单向聚酯帘线/橡胶复合材料的疲劳损伤以聚酯帘线断裂为主,在中应力下,单向聚酯帘线/橡胶复合材料的疲劳损伤是逐步进行的;在你力下,单向聚酯帘线/橡胶复合材料的疲劳损伤仅有局部的界面损伤。  相似文献   

2.
《Ceramics International》2022,48(5):6574-6590
Results from fatigue experiments done on a SiC/SiC composite are presented. A micromechanics-based model is used to study the observed behavior under cyclic loading. The model includes consideration of progressive damage, creep and oxidation of the fiber and matrix. Comparison of model predictions with test data showed that the deformation during fatigue in this material is explained primarily by damage in the form of matrix microcracking and interface debonding, in combination with creep under the cyclic load. Stiffness of the material was observed to not change significantly during fatigue indicating that the contribution of fiber fracture to deformation is limited. Fiber fracture however was found to determine final failure of the composite. Failure under cyclic fatigue loading was found to be affected by load transfer from the matrix to the fiber due to damage and creep, and by progressive degradation of the load-carrying fibers due to the combined effect of oxidation and load cycling.  相似文献   

3.
Creep deformation and rupture behavior of a vitreousbonded aluminum oxide was investigated under uniaxial static and cyclic tensile loadings at 1000°, 1100°, and 1175°C. The material was more creep resistant, i.e., having lower creep strain rates, under cyclic loading compared to that under static loading. For the same maximum applied stress, the ratio of steady-state creep rate under static loading to that under cyclic loading at 1100°C was approximately 100. However, the value of this ratio decreased to about 10 when the testing temperature was raised to 1175°C or lowered to 1000°C. Under static loading the material had more propensity to develop creep damage in the form of micro- and macrocracks, leading to early failure, whereas under cyclic loading the creep damage was more uniformly distributed in the form of cavities confined to the multigrain junctions. Viscous bridging by the grain boundary second phase may be the primary contributor to the lower creep deformation rate and improved lifetime under cyclic loading.  相似文献   

4.
Frictional degradation of grain-localized bridges behind a crack tip has been recognized as the major cyclic fatigue mechanism in alumina ceramics. Such a fatigue mechanism implies that the crack growth resistance ( R ) curve behavior during cyclic fatigue is different from that of monotonic loading due to the reduction in crack-tip shielding. A recent crack-bridging theory based on crack compliances is used to study the bridging stresses under monotonic loading and during cyclic fatigue. The bridging-stress distributions of two coarse-grained aluminas under monotonic loading are determined using compliance measurements. Because the interlocking grain bridges at the crack wake are subject to frictional damage from cyclic loading, the bridging-stress distribution evaluated during cyclic fatigue is distinct from that for monotonic loading. These results indicate that it is incorrect to incorporate the R -curve behavior from monotonic loading to the analysis of cyclic fatigue of alumina ceramics.  相似文献   

5.
Cyclic tensile loading tests of a commercial HIPed silicon nitride at elevated temperatures have indicated apparent "enhanced" fatigue resistance compared to static tensile loading tests under similar test conditions. At 1150°C, stress rupture results plotted as maximum stress versus time to failure did not show significant differences in failure behavior between static, dynamic, or cyclic loading conditions, with all failures originating from preexisting defects (slow crack growth failures). At 1260°C, the stress rupture results showed pronounced differences between static, dynamic, and cyclic loading conditions. Failures at low static stresses (<175 MPa) originated from environmentally assisted (oxidation) and generalized creep damage, while failures at similar times but much greater (up to 2 x) cyclic stresses originated from preexisting defects (slow crack growth failures). At 1370°C, stress rupture results did not show as pronounced differences between static, dynamic, and cyclic loading conditions, with most failures originating from environmentally assisted (oxidation) and generalized creep damage.  相似文献   

6.
An indentation method was used to analyze the damage induced by the cyclic tangential loading of contacting elastic bodies. The degree of damage was ascertained from direct observations and from failure strength measurements. Cyclic crack propagation was demonstrated to occur and is attributed to the development of irreversible deformation at the contact.  相似文献   

7.
Acoustic emission (AE) was used to monitor damage development in a glass fiber/epoxy composite during monotonic and cyclic Mode II loadings of DCB specimens. AE parameters such as event count rates and accumulative event counts together with the distribution of events by time and location in the DCB specimen were used as proper indicators of the damage growth at various stages during testing. AE proved to be a powerful technique to predict in real time the interlaminar failure stress (delamination in Mode II) in both the static and the dynamic tests. An S-N curve constructed entirely on the AE signatures recorded during fatigue testing exhibits three distinct stages enabling delineation of period of damage initiation, the period of damage growth, and finally the occurrence of delamination. A generalized expression based on the nonlinear cumulative damage model was developed to correlate AE activity with the damage development in the composite during cyclic loading. The fatigue data to date agree well with this method of prediction of the fatigue life.  相似文献   

8.
Damage accumulation in continuous unidirectional glass reinforced composites was studied by acoustic emission (AE) monitoring during three-point-bend loading. Results are presented for four composites monitored during quasi-static break loading, and one composite also monitored during cyclic fatigue and static creep loading. AE response was correlated with the mechanical (stress-strain) response and with visual observation of damage events to study the details of the damage accumulation process. Results show that the failure process is characterized by the sequential occurrence of three distinct damage mechanisms. Specifically, the failure process initiated with cohesive matrix damage, propagated with interfacial debonding, and ended with fiber breakage very near catastrophic failure. The same sequential damage process occurred in all four composites and all three test procedures examined. Results also demonstrate that AE analysis, in combination with mechanical testing and microscopic observation, is a valuable tool in understanding damage accumulation in composites.  相似文献   

9.
Failure mechanisms of an alumina, tested at 1200°C under static and various cyclic loading conditions, were examined. Slow crack growth of a single crack is the dominant mechanism for the failure in specimens under cyclic loading with a short duration of maximum stress at all applied stress levels, as well as at high applied loads for static loading and cyclic loading with a longer hold time at maximum stress. At low stress levels, failure of static loading and cyclic loading with a longer hold time at maximum stress might occur by formation and/or growth of multiple macrocracks. More importantly, for all the given loading conditions. The viscous glassy phase behind the crack tip could have a bridging effect on the crack surfaces. A simplified model for calculating effective stress intensity factor at the crack tip under static and various cyclic loading demonstrated a trend consistent with the stress–life data.  相似文献   

10.
Fatigue behavior of alumina at 1200°C was investigated. Uniaxial tensile tests were conducted in both static and cyclic loading. A variety of loading wave forms were applied during the cyclic tests. Cyclic lifetime is found to be cycle shape dependent and controlled by the duration of the hold time at the maximum tensile stress in a cycle. Cyclic loading with a higher strain rate and a short duration of maximum stress during each cycle provides a beneficial effect on lifetime in comparison to static loading at the same maximum stress. The time to failure for cyclic loading with a longer hold time at maximum stress is very close to the static loading lifetime. Viscous boundary phase may be the primary contributor to the improved cyclic fatigue resistance for cyclic loading with a short duration of maximum stress.  相似文献   

11.
A model to predict fatigue crack growth in bonded joints under mixed mode I/II conditions is developed in this work. The model is implemented in the finite element software ABAQUS using the related USDFLD subroutine. The present model is based on the cohesive zone (CZ) concept, where damage develops according to the value of the opening/sliding at the bondline under static loading, and according to a cyclic damage accumulation law under fatigue loading. The damage accumulation law is obtained by distributing the cyclic crack area increment over the process zone ahead of the crack tip, where the cyclic crack area increment is calculated according to a Paris-like law that relates the crack growth rate to the applied loading. In this way, the experimental crack growth rate is related directly to damage evolution in the cohesive zone, i.e., no additional parameters have to be tuned besides the quasi-static cohesive zone parameters.  相似文献   

12.
ABSTRACT

In this paper, the damage development and lifetime prediction of fibre-reinforced ceramic-matrix composites subjected to cyclic loading at elevated temperatures in oxidising atmosphere have been investigated. Considering the damage mechanisms of matrix cracking, interface debonding, interface wear and interface oxidation, the damage evolution of fatigue hysteresis dissipated energy, fatigue hysteresis modulus, fatigue peak strain, interface shear stress and broken fibres fraction have been analysed. The relationships between damage parameters and internal damage of matrix cracking, interface debonding and slipping, and fibres fracture have been established. The experimental fatigue hysteresis, interface slip lengths, peak strain, and the fatigue life curves of cross-ply CMCs under cyclic loading at elevated temperature have been predicted. The different fatigue behaviour in unidirectional and cross-ply CMCs at room and elevated temperatures subjected to low-cycle and high-cycle fatigue has been discussed.  相似文献   

13.
Contact Fatigue in Silicon Nitride   总被引:1,自引:0,他引:1  
A study of contact fatigue in silicon nitride is reported. The contacts are made using WC spheres, principally in cyclic but also in static loading, and mainly in air but also in nitrogen and water. Damage patterns are examined in three silicon nitride microstructures: (i) fine ( F )-almost exclusively fully-developed cone cracks; (ii) medium ( M )-well developed but smaller cone cracks, plus modest subsurface quasi-plastic damage; (iii) coarse ( C )-intense quasi-plastic damage, with little or no cone cracking. The study focuses on the influence of these competing damage types on inert strength as a function of number of contacts. In the F and M microstructures strength degradation is attributable primarily to chemically assisted slow growth of cone cracks in the presence of moisture during contact, although the M material shows signs of enhanced failure from quasi-plastic zones at large number of cycles. The C microstructure, although relatively tolerant of single-cycle damage, shows strongly accelerated strength losses from mechanical degradation within the quasi-plastic damage zones in cyclic loading conditions, especially in water. Implications concerning the design of silicon nitride microstructures for long-lifetime applications, specifically in concentrated loading, are considered.  相似文献   

14.
Structural changes occurring during the fatigue failure of polyester fibers have been identified, and a comparison has been made with untested fibers and fibers which were subjected to cyclic loading conditions which did not produce fatigue. Fatigue failure was seen to result in a distinctive fracture morphology. Infrared spectrometry and X-ray diffraction revealed a lowering of crystallinity under fatigue conditions but not under other loading conditions. Transmission electron microscopy and electron diffraction revealed the creation of amorphous zones which are supposed as coalescing to form an amorphous band seen along and ahead of the fatigue crack. The zone just ahead of the fatigue crack tip is shown to contain voids. Crack propagation involves, therefore, the joining up of these voids and development along the amorphous band.  相似文献   

15.
To enhance the understanding of matrix cracking and damage progression on the macroscopic scale, within a 0/90° fibre reinforced SiCf/SiC ceramic matrix composite (CMC), X-ray computed tomography (XCT) imaging and analysis have been performed in conjunction with a commercially available in-situ mechanical loading device. CMC test coupons were subjected to tensile cyclic loads and inspected using XCT without removal from the tensile loading device. Attempts to measure and quantify the resulting damage using volumetric image analysis techniques are presented, by characterising the crack network from XCT images acquired at both the maximum and minimum load condition during selected fatigue cycles. The XCT detection of significant crack development within the first loading half-cycle shows good agreement with cumulative acoustic emission energy data recorded under similar test conditions. The results are seen as an important step towards correlating the damage behaviour detected via different NDE and health monitoring techniques.  相似文献   

16.
A study has been made of the origin of unexpected moisture effects on crack extension in fiberglass laminates. Water immersion has been found to greatly reduce the rate of crack growth under constant loading while increasing the rate under cyclic loading, the latter effect being the expected one. Observations were made of the extension of the stable damage zone at the tip of precut notches in wet and dry environments. The damage zone size is postulated as a critical element in the relaxation of high stress concentrations in composites, such as those at notch or crack tips. Under constant load, moisture is shown to greatly expand the interply delamination region in the damage zone, thus reducing the local fiber stresses and increasing crack resistance. Under cyclic loading moisture has little effect on the delamination region, which is large even for dry environments, and the only effect is weakening of the material and acceleration of cracks. Severe hygrothermal conditions can so weaken the material that the crack resistance is reduced under constant loading as well.  相似文献   

17.
A failure analysis of four carbon nanotube (CNT) wires comprised of 1-, 30-, 60-, and 100-yarns was conducted when subjected to constant tension and cyclic tension–tension loading conditions. Each wire had different controlling mechanisms of failure. Tensile and cyclic load-induced failures were related to the movement within yarns and/or among yarns in the CNT wires. The 1-yarn CNT wire exhibited a ductile fracture when constant tensile load was applied; recoverable deformation bands were observed on bending and straightening. The 30-yarn CNT wire showed a variant/independent fibrillar failure under constant tensile loading condition, while it failed by biaxial rotation, bend and twist under cyclic loading condition. The 60-yarn CNT wire resulted in a stake and socket fibre fracture when loaded to failure in constant tension; however, in the cyclic loading condition, the wire failed by kink band process. The 100-yarn wire failure mechanism was controlled by the surface wear in both constant tension and fatigue loading conditions. This failure analysis study presents detailed fracture surface features that can be used to diagnose the cause of failure, develop failure mechanisms, and improve the properties of CNT wires when used in real-life applications.  相似文献   

18.
《Ceramics International》2015,41(6):7366-7373
The accumulative damage behaviour of BN-coated Hi-Nicalon™ SiC fibre-reinforced SiC matrix composite was examined under tensile cyclic loading at room and elevated temperatures. The accumulative damage occurring during the cyclic loading was quantitatively characterised using the damage parameter obtained by the hysteresis loop curves. The damage parameter increased with increasing applied stress beyond the matrix cracking stress, and it subsequently retained a nearly constant value until just before fracture. Moreover, the dielectric constant, dielectric loss and loss tangent of the composite were measured before and after the fracture in the frequency range 1–1000 MHz. The dielectric properties had similar frequency dependency before and after the fracture. However, the dielectric constant, dielectric loss and loss tangent were lower in the post-fractured specimens than in the pristine ones. The reduction of the dielectric properties was associated with the accumulative damage stored in the specimens. In addition, the relationships between the dielectric properties and the damage parameter were described in detail.  相似文献   

19.
This paper presents an experimental study and theoretical analyses on the monotonic and fatigue performance in bending of a polyvinyl alcohol (PVA) fiber-reinforced engineered cementitious composite (ECC) overlay system. The influence of the interfacial characteristics between overlay and old concrete substrate on the overall bending performance is investigated. The experimental results show that when ECC is used as overlay material, both load carrying capacity and deformability represented by deflection at peak load of the overlaid beams in flexure are significantly increased compared to those of plain concrete (PC) overlaid beams. The fatigue life of ECC overlaid beams in flexure is not influenced by the layer/base interfacial characteristics, such as smooth cutting surface or sand-blasted rough surface. However, the deformation ability of the overlaid beams, such as deflection at midpoint of beam, in both static and cyclic loading cases are influenced by the interfacial property. The smooth casting surface leads to larger deformation at peak load under monotonic loading and at failure under fatigue loading than the corresponding values for beams with a rough casting surface. The present study demonstrates that reflective cracking failure in pavement overlays can be eliminated by the use of a ductile material such as ECC.  相似文献   

20.
Ceramic materials are potentially useful for dental applications because of their esthetic potential and biocompatibility. However, evidence of contact fatigue damage in ceramics raises considerable concern regarding its effect on the survival probability predicted for dental prostheses. To simulate intraoral conditions, Hertzian indentation loading with steel indenters was applied in this study to characterize the fatigue failure mechanisms of ceramic materials. Baria silicate glasses and glass-ceramics with different aspect ratios of crystals were selected because the glass and crystal phases have similar density, elastic modulus, and thermal expansion coefficients. Therefore, this system is a model ceramic for studying the effect of crystal geometry on contact cyclic fatigue failure. The subsequent flexural strength results show that the failure of materials with a low fracture toughness such as baria-silicate glass (0.7 MPa m1/2) and glass-ceramic with an aspect ratio of 3.6/1 (1.3 MPa m1/2) initiated from cone cracks developed during cyclic loading for 103 to 105 cycles. The mean strengths of baria-silicate glass and glass-ceramics with an aspect ratio of 3.6/1 decreased significantly as a result of the presence of a cone crack. Failures of baria-silicate glass-ceramics with an aspect ratio of 8.1/1 (Kc = 2.1 MPa m1/2) were initiated from surface flaws caused by either grinding or cyclic loading. The gradual decrease of fracture stress was observed in specimens with an aspect ratio of 8.1/1 after loading in air for 103 to 105 cycles. A reduction of approximately 50 % in fracture stress levels was found for specimens with an aspect ratio of 8.1/1 after loading for 105 cycles in deionized water. Thus, even though this glass-ceramic with an 8.1/1 crystal aspect ratio material is tougher than that with a 3.6/1 crystal aspect ratio, the fatigue damage induced by a large number of cycles is comparable. The mechanisms for cyclic fatigue crack propagation in baria-silicate glass-ceramics are similar to those observed under quasi-static loading conditions. An intergranular fracture path was observed in glass-ceramics with an aspect ratio of 3.6/1. For an aspect ratio of 8.1/1, a transgranular fracture mode was dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号