首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the observability analysis for linear time systems whose outputs are affected by unknown inputs. Three different definitions of observability are proposed. By introducing the Smith form and comparing the invariant factors, a sufficient condition is deduced for each proposed observability definition. Three examples are given for the purpose of highlighting the effectiveness of the proposed approach.  相似文献   

2.
In this paper, we address the problem of minimum variance estimation for discrete-time time-varying stochastic systems with unknown inputs. The objective is to construct an optimal filter in the general case where the unknown inputs affect both the stochastic model and the outputs. It extends the results of Darouach and Zasadzinski (Automatica 33 (1997) 717) where the unknown inputs are only present in the model. The main difficulty in treating this problem lies in the fact that the estimation error is correlated with the systems noises, this fact leads generally to suboptimal filters. Necessary and sufficient conditions for the unbiasedness of this filter are established. Then conditions under which the estimation error and the system noises are uncorrelated are presented, and an optimal estimator and a predictor filters are derived. Sufficient conditions for the existence of these filters are given and sufficient conditions for their stability are obtained for the time-invariant case. A numerical example is given in order to illustrate the proposed method.  相似文献   

3.
The problem of partial unknown input (UI) reconstruction is addressed. It is considered that a linear functional of the UI vector has to be reconstructed using output information only. Necessary and sufficient conditions are given allowing for the reconstruction in finite time of the required UI’s; analogous conditions are obtained for the asymptotic reconstruction of the required UI’s. The solution of the problem under consideration provides a means to solve the problem of fault detection and isolation for disturbed linear systems.  相似文献   

4.
This paper presents an adaptive fuzzy control scheme for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with the nonsymmetric control gain matrix and the unknown dead-zone inputs. In this scheme, fuzzy systems are used to approximate the unknown nonlinear functions and the estimated symmetric gain matrix is decomposed into a product of one diagonal matrix and two orthogonal matrices. Based on the decomposition results, a controller is developed, therefore, the possible controller singularity problem and the parameter initialization condition constraints problem are avoided. In addition, a dynamic robust controller is employed to compensate for the lumped errors. It is proved that all the signals in the proposed closed-loop system are bounded and that the tracking errors converge asymptotically to zero. A simulation example is used to demonstrate the effectiveness of the proposed scheme.  相似文献   

5.
This paper proposes a new nonlinear unknown input observer. The observer design approach utilizes the first order Taylor expansion. The observer gains are then obtained by a systematic method. In this paper, we added some improvements to this method. The developed approach also can enable observer design for a large class of differentiable nonlinear systems. The necessary and sufficient conditions for the existence of the observer are given. A numerical example is given to illustrate the attractiveness and the simplicity of the new design procedure.  相似文献   

6.
This paper considers the design of low-order unknown input functional observers for robust fault detection and isolation of a class of nonlinear Lipschitz systems subject to unknown inputs. The proposed functional observers can be used to generate residual signals to detect and isolate actuator faults. By using the generalized inverse approach, the effect of the unknown inputs can be decoupled completely from the residual signals. Conditions for the existence and stability of reduced-order unknown input functional observer are derived. A design procedure for the generation of residual signals to detect and isolate actuator faults is presented using the proposed unknown-input observer-based approach. A numerical example is given to illustrate the proposed fault diagnosis scheme in nonlinear systems subject to unknown inputs.  相似文献   

7.
Algebraic unknown input observers (UIOs) that have been previously reported in the literature can be constructed under the assumption that linear systems with unknown inputs satisfy the so-called observer matching condition. This condition restricts practical applications of UIOs for fault detection and isolation (FDI). We present an algebraic design for fault detection observers (FDOs) for the case in which the observer matching condition is not satisfied. To loosen the restriction imposed by the observer matching condition, the UIO design method combined with the unknown input modeling technique is proposed to design an FDO that decouples the effect of mismatched unknown inputs. To do this, first, unknown inputs that denote the faults of no interest and process disturbances are decomposed into algebraically rejectable unknown inputs and modeled unknown inputs such that the observer matching condition is satisfied. Under the assumption that mismatched unknown inputs are deterministic and can be expressed as the responses of fictitious autonomous dynamical systems, an augmented system is obtained by combining the original system model with the unknown input model. Finally, through the design technique of a UIO for the augmented system, a reduced-order FDO is constructed to estimate an augmented state vector that consists of both the original state variables and the augmentative state variables. The estimated state is then used to generate the residual, which should be designed to be insensitive to unknown inputs while being sensitive to the faults of interest. Two numerical examples are provided to show the usefulness and the feasibility of the presented approach.  相似文献   

8.
9.
This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appear on both the state and output matrices. The observer design problem is formulated as a set of linear constraints which can be easily solved using linear matrix inequalities (LMI) technique. An application based on manipulator arm actuated by a direct current (DC) motor is presented to evaluate the performance of the proposed observer. The observer is applied to estimate both state and faults.  相似文献   

10.
In this paper, a globally optimal filtering framework is developed for unbiased minimum-variance state estimation for systems with unknown inputs that affect both the system state and the output. The resulting optimal filters are globally optimal within the unbiased minimum-variance filtering over all linear unbiased estimators. Globally optimal state estimators with or without output and/or input transformations are derived. Through the global optimality evaluation of this research, the performance degradation of the filter proposed by Darouach, Zasadzinski, and Boutayeb [Darouach, M., Zasadzinski, M., & Boutayeb, M. (2003). Extension of minimum variance estimation for systems with unknown inputs. Automatica, 39, 867-876] is clearly illustrated and the global optimality of the filter proposed by Gillijns and De Moor [Gillijns, S., & De Moor, B. (2007b). Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough. Automatica, 43, 934-937] is further verified. The relationship with the existing literature results is addressed. A unified approach to design a specific globally optimal state estimator that is based on the desired form of the distribution matrix from the unknown input to the output is also presented. A simulation example is given to illustrate the proposed results.  相似文献   

11.
In this paper, a state and unknown input delayed estimator is designed for discrete-time linear systems even if some well-known matching condition does not hold. This result is obtained using a constructive algorithm that analyzes the state observability and the left invertibility of the systems with unknown inputs and that provides a suitable canonical transformation for the design of the estimator.  相似文献   

12.
This paper investigates the problem of global stabilization by output feedback, for a family of uncertain nonlinear systems without zero dynamics. These nonlinear systems are dominated by a triangular system satisfying linear growth condition. In contrast to the previous work in the literature, the growth rate here is a positive constant but not known a priori, and therefore the problem becomes more involved and difficult. Using the idea of universal control combined with the output feedback design method developed in Qian and Lin (2002, 2003), we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the uncertain systems without knowing the growth rate.  相似文献   

13.
The robust integral control problem is studied for a class of nonlinear systems with input-to-state stable (ISS)unmodeled dynamics in this paper.It does not require a priori knowledge of the control coefficients.Combining the Nussbaum-type gain technique and the backstepping design,we propose a state feedback controller,which could achieve the global asymptotic tracking for any constant reference signal,irrespective of the unmeasured dynamic disturbance.It is shown that the proposed methodology further extends the existing robust nonlinear integral control results.Simulation results verify the correctness of the theoretical analysis.  相似文献   

14.
In this paper, a direct fuzzy adaptive robust control approach is proposed for a class of SISO nonlinear systems with completely unknown virtual control directions, unknown nonlinearities, unmodeled dynamics and dynamic disturbances. In the backstepping recursive design, fuzzy logic systems are employed to approximate the combined nonlinear uncertainties, a dynamic signal and Nussbaum gain technique are introduced into the control scheme to dominate the dynamic uncertainties and solve the unknown signs of virtual control directions, respectively. It is proved that the proposed robust fuzzy adaptive scheme can guarantee the all signals in the closed-loop system are semi-globally uniformly ultimately bounded. The effectiveness of the proposed approach is illustrated via three examples.  相似文献   

15.
The following four major aspects for the observer design problem for generalized state space systems with unknown inputs are resolved: Necessary and sufficient conditions for the problem to have a solution, the order of the minimal observer, the properties of the closed-loop system (separation principle) and general analytical expressions of the minimal order observer matrices. All above results are first in the field.  相似文献   

16.
17.
A simple backstepping design procedure is proposed and sufficient conditions for global partial state- and dynamic- feedback stabilization for a class of triangular systems with unknown time-varying parameters are derived.  相似文献   

18.
The observability of nonlinear delay systems has previously been defined in an algebraic setting by a rank condition on modules over noncommutative rings. We introduce an analytic definition of observability to ensure the local uniqueness of state and initial conditions that correspond to a given input-output behaviour. It is shown that an algebraically observable delay system can be reformulated as a system of ordinary differential equations. Analytic observability is then decided by the local uniqueness of solutions to a boundary value problem for this ODE system.  相似文献   

19.
20.
ABSTRACT

This paper deals with unknown input estimation for switched linear systems in an unknown but bounded error (UBBE) framework. Based on a known switching signal and under the fulfilment of the relative degree property by all the subsystems, a decoupling method is used to make the state partially affected by the unknown input. Assuming that the disturbances and the measurement noises are unknown but bounded with a priori known bounds, lower and upper bounds of the unmeasured state and unknown input are then computed. A numerical example illustrates the efficiency of the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号