首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
低温真空多层绝热结构热阻的理论分析   总被引:7,自引:0,他引:7  
低温下真空多层绝热是非常有效的绝热方式,广泛应用于众多领域的科研和工程实践中。低温下真空多层绝热的影响因素很多,具体包括反射屏之间隔层的材料特性、反射屏的层数、层密度、真空度、捆扎的松紧程度等。运用热阻网络分析了间隔物为纤维材料的低温真空多层绝热结构的热阻组成,对总热阻中固体导热热阻Rconduction(solid)、辐射换热热阻Rradiation、残余气体导热热阻Rconduction(gas)分别建立了理论模型,并进行了理论计算推导,得到了低温下真空多层绝热结构总热阻的计算公式。  相似文献   

2.
Effective thermal conductivity of loose particulate systems   总被引:5,自引:0,他引:5  
The effective thermal conductivity for several loose particulate insulation systems has been measured in the temperature range from 273 K–900 K and the results compared to those predicted from three different models. The measured thermal conductivities increase with temperature. This is accounted for in terms of increased conduction by the fluid (air) and the radiative heat transfer through the media although the latter mode of heat transfer is relatively suppressed in materials containing finer particles. The model due to Zumbrunnen et al. [1] was found to predict values that closely agreed with the experimental values.  相似文献   

3.
Thermal Conduction and Insulation Modification in Asphalt-Based Composites   总被引:1,自引:0,他引:1  
The relationship between thermal conductivity and properties of mixing particles is required for quantitative study of heat transfer processes in asphalt-based materials. In this paper, we measured the e?ective ther- mal conductivity of asphalt-based materials with thermal conduction (graphite) and insulation (cenosphere) powders modification. By taking account of the particle shape, volume fraction, the thermal conductivity of filling particles and base asphalt, we present a new differential effective medium formula to predict the thermal conductivity modification in asphalt-based composite. Our theoretical predications are in good agreement with the experiment data. The new model can be applied for predicting the thermal properties of asphalt-based mixture, which is available for most of thermal modification in two-phase composites.  相似文献   

4.
In order to explore the relationship between effective thermal conductivity of an evacuated powder and the bulk thermal conductivity of the same material, the effective thermal diffusivities of particulate NaCl and Dianin's inclusion compound with ethanol guests (abbrev. ED) with effective porosities 0.5 were measured and used to determine their effective thermal conductivities below 300 K. Calculations showed that contact heat conduction is the predominant mechanism, i.e., heat transfer by radiation and by conduction through the gas phase are negligible in the measurement conditions. The effective thermal conductivity of particulate as-synthesised ED powder was found to be proportional to the bulk thermal conductivity for three different samples. On the other hand, the effective thermal conductivity of NaCl powder was found to have a softer temperature dependence than the bulk thermal conductivities reported for measurements of NaCl single crystals. This was related to increased concentration of structural defects formed during mechanical grinding of the NaCl sample.  相似文献   

5.
Altan CL  Bucak S 《Nanotechnology》2011,22(28):285713
Conventional heat transfer fluids have intrinsically poor heat transfer properties compared to solids. Enhancing the efficiency of heat transfer is of great interest for various industrial applications. Suspending solid particles in a fluid increases the thermal conductivity of the resulting suspension and enhances the heat transfer properties. In this work, changes in thermal conductivities of fluids upon the addition of magnetic nanoparticles have been investigated. Fe(3)O(4) nanoparticles are synthesized using different synthesis methods and are suspended in various oils. The effect of the base fluid and the type of magnetic particle on the thermal conductivity is investigated in detail. Up to 28% increase in the thermal conductivity is obtained with 2.5 wt% magnetic particles in hexane. The thermal conductivity enhancement is found to depend on the particle concentration, method of preparation and base fluid. The enhancements obtained are higher than those estimated using any theoretical model present in the literature.  相似文献   

6.
In situ planetary thermal conductivity measurements are typically made using a long needle-like probe, which measures effective thermal conductivity in the probe??s radial (horizontal) direction. The desired effective vertical thermal conductivity for heat flow calculations is assumed to be the same as the measured effective horizontal thermal conductivity. However, it is known that effective thermal conductivity increases with increasing compressive pressure on granular beds and the horizontal stress in a granular bed under gravity is related to the vertical stress through Jaky??s at rest earth pressure coefficient. The objectives of this study were to examine the validity of the isotropic property assumption and to develop a fundamental understanding of the effective thermal conductivity of a dry, noncohesive granular bed under uniaxial compression. A model was developed to predict the increase in effective vertical and horizontal thermal conductivity with increasing compressive vertical applied pressure. An experiment was developed to simultaneously measure the effective vertical and horizontal thermal conductivities of particle beds with needle probes. Measurements were made as compressive vertical pressure was increased to show the relationship between increasing pressure and effective vertical and horizontal thermal conductivity. The results of this experiment showed quantitatively the conductivity anisotropy for two different materials and validated the developed model. This model can be used to predict the anisotropic effective thermal conductivity of granular materials under uniaxial compressive pressures, and evaluate the uncertainties in lunar heat flow measurements.  相似文献   

7.
Heat transport plays a critical role in modern batteries, electrodes, and capacitors. This is caused by the ongoing miniaturization of such nanotechnological devices, which increases the local power density and hence temperature. Even worse, the introduction of heterostructures and interfaces is often accompanied by a reduction in thermal conductivity, which can ultimately lead to the failure of the entire device. Surprisingly, a fundamental understanding of the governing heat transport processes even in simple systems, such as binary particle mixtures is still missing. This contribution closes this gap and elucidates how strongly the polydispersity of a model particulate system influences the effective thermal conductivity across such a heterogeneous system. In a combined experimental and modeling approach, well‐defined mixtures of monodisperse particles with varying size ratios are investigated. The transition from order to disorder can reduce the effective thermal conductivity by as much as ≈50%. This is caused by an increase in the thermal transport path length and is governed by the number of interparticle contact points. These results are of general importance for many particulate and heterostructured materials and will help to conceive improved device layouts with more reliable heat dissipation or conservation properties in the future.  相似文献   

8.
A theoretical model to predict the effective thermal conductivity of a multi-component polydisperse granular bed is presented. A simple energy balance analysis is used to arrive at an approximate analytical expression for the effective thermal conductivity. Simulation of heat transfer in a granular bed is carried out using an open source Discrete Element Method (DEM) package called LIGGGHTS. The derived analytical expressions for the effective thermal conductivity compares well with the results obtained from DEM simulations for granular beds comprising of different components with different sizes.  相似文献   

9.
A homogenization technique is proposed to simulate the thermal conduction of periodic granular materials in vacuum. The effective thermal conductivity (ETC) and effective volumetric heat capacity (EVHC) can be obtained from the granular represent volume element (RVE) via average techniques: average heat flux and average temperature gradient can be formulated by the positions and heat flows of particles on the boundaries of the RVE as well as of the contact pairs within the RVE. With the thermal boundary condition imposed on the border region around the granular RVE, the ETC of the granular RVE can be computed from the average heat flux and average temperature gradient obtained from thermal discrete element method (DEM) simulations. The simulation results indicate that the ETC of the granular assembly consisting of simple-cubic arranged spheres coincides with the theoretical prediction. The homogenization technique is performed to obtain the ETC of the RVE consisting of random packed particles and the results exhibit the anisotropy of the thermal conduction properties of the RVE. Both the ETC and EVHC obtained are then employed to simulate the thermal conduction procedure in periodic granular materials with finite element analyses, which give the similar results of temperature profile and conduction properties as the DEM simulations.  相似文献   

10.
In this paper, we investigate the radiative properties and the effective thermal conductivity (ETC) of the opacified silica aerogel by theoretical method. The radiative properties of the opacified silica aerogel are obtained by the modified Mie Scattering Theory that is used for particle scattering in absorbing medium. The modified gamma distribution is used to take account of the non-uniformity of the particle size. The solid thermal conductivity of the composite material is obtained by considering the scale effect of the particles. Based on these calculated thermophysical properties the coupled heat conduction and radiation through the evacuated opacified aerogel are solved by the finite volume method. And the radiation flux is computed by the P-1 approximation combined with the gray-band model. Results show that, the calculated thermophysical properties of the TiO2-doped silica aerogel are close to the experimental data. The optimal mean radius for the largest radiation extinction of the SiC particles is about 1μm. The presented data of optimal doping amount of the SiC particles at different temperature conditions for the evacuated silica aerogel is very useful for thermal insulation material design.  相似文献   

11.
ABSTRACT

In this paper, the heat transfer characteristics of a 2D gas–solid spout fluidized bed with a hot gas jet are investigated using computational fluid dynamics-discrete element method. The initial temperature of the background gas and particles in the spouted bed was set to 300?K. The particle temperature distribution after injection of 500?K gas from the bottom, center of the bed, is presented. The simulation results indicate well heat transfer behavior in the bed. Then, statistical analysis is conducted to investigate the influence of inlet gas velocity and particle thermal conductivity on the heat transfer at particle scale in detail. The results indicate that the particle mean temperature and convective heat transfer coefficient (HTC) linearly increase with the increase in inlet gas velocity, while the conductive HTC and the uniformity of particle temperature distribution are dominated by the particle thermal conductivity. The conductive and convective heat transfer play different roles in the spout fluidized bed. These results should be useful for the further research in such flow pattern and the optimization of operating such spouted fluidized beds.  相似文献   

12.
在细观层次上将1,3,5-三氨基-2,4,6-三硝基苯(TATB)/高聚物(TATB/PBX)视为由TATB颗粒、高聚物及微孔隙组成的三相复合材料。采用蒙特卡罗方法,建立了能够反映PBX细观结构的代表体积单元(RVE)模型,该模型可以生成高聚物颗粒和微孔隙随机分布、填充物体积分数和孔隙率任意调整的有限元计算(FEM)模型。研究了TATB填充体积分数、孔隙率和分布对TATB/PBX有效热导率的影响。结果表明:TATB/PBX有效热导率随着TATB体积分数的增加而增大;在相同的TATB填充体积分数下,随着孔隙率的增大,TATB/PBX的有效热导率呈指数减小,但孔隙的空间分布对有效热导率影响不大。模拟值与实验结果具有较好的一致性,证明所建二维RVE三相有限元模型可以用来预测TATB/PBX的有效热导率。  相似文献   

13.
开孔金属泡沫的传热分析   总被引:3,自引:0,他引:3  
闫长海  孟松鹤  陈贵清  杜善义  刘国仟 《功能材料》2006,37(8):1292-1294,1302
主要从开孔金属泡沫微观组织的基本结构出发对开孔金属泡沫内的固体热传导、气体热传导和热辐射进行了分析,根据以上的分析利用能量方程和两热流法建立了开孔金属泡沫的传热模型,并利用试验对泡沫镍的有效导热系数进行了测量,泡沫镍的有效导热系数实验值验证了开孔金属泡沫传热模型的正确性.  相似文献   

14.
An analytical model for the thermal conductivity of Cu/diamond composites with connected particles is presented by replacement of a cluster of connected particles with an equivalent polycrystal subsequently using a multiple effective medium approach. By applying this model to the measured thermal conductivity of Cu/diamond composites prepared by high pressure high temperature sintering technique reported in the literature, we show that it quite well describes the observed thermal conductivity enhancement induced by the connected particles. We estimate the value of connected particle loading in real composites and show that large particles are easier to form the bonding contact than small particles. The present work also demonstrates that the sensitivity of thermal conductivity contribution from the connected particles strongly depends on the particle size, and their pronounced thermal conductivity enhancement should lie within the certain particle size range.  相似文献   

15.
Hollow particle filled composites, called syntactic foams, are used in weight sensitive structural applications in this paper. In this paper, homogenization techniques are used to derive estimates for thermal conductivity of hollow particle filled composites. The microstructure is modeled as a three-phase system consisting of an air void, a shell surrounding the air void, and a matrix material. The model is applicable to composites containing coated solid particles in a matrix material and can be further expanded to include additional coating layers. The model is successful in predicting thermal conductivity of composites containing up to 52% particles by volume. Theoretical results for thermal conductivity are validated with the results obtained from finite element analysis and are found to be in close agreement with them. A simplified approximation of the theoretical model applicable to thin shells is also validated and found to be in good agreement with the corresponding finite element results. The model is applicable to a wide variety of particulate composite materials and will help in tailoring the properties of particulate composites as per the requirements of the application.  相似文献   

16.
通过膨胀石墨粉与石蜡混合制备相变复合材料可有效提高该储能材料的传热性能。为研究膨胀石墨/石蜡相变复合材料的导热机制,提出了膨胀石墨粉与石蜡混合后的3尺度层次固体有效导热系数计算方法。然后,通过数值模拟计算得到了具有不同体积分数和不同导热系数的膨胀石墨导热颗粒的膨胀石墨/石蜡相变复合材料的有效导热系数。结果表明:膨胀石墨能够有效地提高石蜡的导热性能,当膨胀石墨的体积分数为10%时,膨胀石墨/石蜡相变复合材料的有效导热系数是纯石蜡的9倍。此外,提高底层尺度的石墨片与石蜡的混合程度及降低底层尺度石墨的体积分数都能有效提高膨胀石墨/石蜡相变复合材料的有效导热系数。所得结论为探究膨胀石墨粉提高相变复合材料导热系数的机理奠定了基础。  相似文献   

17.
Simple analytical methods have been employed for heat transfer analysis of experimental data obtained through calorimetric investigations on multilayer insulation (MLI). Sectional heat transfer analysis has shown that the effective thermal conductivity of the MLI varies from section to section of the insulation structure and it has a peak which lies between the middle and warm boundary regions of the MLI. This could be attributed to a peak in residual gas conduction in this region. The theoretical estimation of heat flux through MLI, using a simple analytical model, is also discussed in this paper. This model takes into consideration the non-linear temperature profile of the insulation. The computed heat flux using this model gives a lower (2 to 4 times) value in comparison with the heat flux estimated from calorimetric measurements. A refined model has been suggested which includes the residual gas conduction also in MLI.  相似文献   

18.
The theoretical investigation of the effective thermal conductivities of nanofluids, a new class of solid-liquid suspensions, is important in both predicting and designing nanofluids with effective thermal conductivities. We have developed a new thermal conductivity model for nanofluids that is based on the assumption that monosized spherical particles are uniformly dispersed in the liquid and are located at the vertexes of a simple cubic lattice, with each particle surrounded by a liquid layer having a thermal conductivity that differs from that of the bulk liquid. This model nanofluid with a cubical arrangement of nanoparticles gives a more practical upper limit of thermal conduction than a model nanofluid with a parallel arrangement of nanoparticles. The new model unexpectedly shows a nonlinear relationship of thermal conductivity with particle concentration, whereas the conductivity-concentration curve changes from convex upward to concave upward with increasing volume concentration. The effects of particle and layer parameters on the effective thermal conductivities are also analyzed. A comparison of predicted thermal conductivity values and experimental data shows that the predicted values are much higher than the experimental data, a finding that indicates that there is a potential to further improve the effective thermal conductivities of nanofluids with more uniformly dispersed particles.  相似文献   

19.
This paper focuses on the anisotropic characteristics of the in-plane thermal conductivity of fiber-reinforced polymer composite based on experiment and simulation. Thermal conductivity along different in-plane orientations was measured by laser flash analysis (LFA) and steady-state heat flow method. Their heat transfer processes were simulated to reveal the geometrical effect on thermal conduction. The results show that the in-plane thermal conduction of unidirectional carbon-fiber-reinforced polymer composite is greatly influenced by the sample geometry at an in-plane orientation angle between 0° to 90°. By defining radius-to-thickness as a dimensionless shape factor for the LFA sample, the apparent thermal conductivity shows a dramatic change when the shape factor is close to the tangent of the orientation angle (tanθ). Based on finite element analysis, this phenomenon was revealed to correlate with the change of the heat transfer process. When the shape factor is larger than tanθ, the apparent thermal conductivity is consistent with the estimated value according to the theoretical model. For a sample with a shape factor smaller than tanθ, the apparent thermal conductivity shows a slow growth around a low value, which seriously deviates from the theory estimation. This phenomenon was revealed to correlate with the change of the heat transfer process from a continuous path to a zigzag path. These results will be helpful in optimizing the ply scheme of composite laminates for thermal management applications.  相似文献   

20.
The thermal behavior of hollow conductive particles filled in epoxy resin has been investigated using 3D finite element computation. The effect of the filler concentrations associated with the particle/matrix interfacial resistance on the effective thermal conductivity of the composites was considered. The relationship between the out-of-plane effective thermal conductivity, the wall thickness of the hollow particles, and the ratio of the thermal conductivities of the filler to the matrix material were also taken into account. The numerical results show an increase of the effective thermal conductivity with increasing wall thickness of the hollow particles. However, for a large contact resistance and/or for a high effective thermal conductivity, it is shown that the contact resistance has a dominant influence on the effective thermal conductivity of the composites. The numerical results were also compared to some well-known analytical effective thermal conductivity models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号