首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、前言α-Al_2O_3·3H_2O(Gibbsite)是制备各种各样氧化铝的主要原料,它在热解过程中的相变化,已有许多研究。Brown等用x射线衍射及差热分析法(DTA)研究粗颗粒α-Al_2O_3·3H_2O的热分解时,首先提出了沿二条途径分解的机理,这一机理现已被普遍地接受。在粗颗粒α-Al_2O_3·3H_2O的DTA曲线上,600℃以前有三个吸热峰(脱水峰)(1、2、3、4、5、]:第一吸热峰(虽然对其成因有着不同的解释)相应于α-Al_2O_3·3H_2O部  相似文献   

2.
一、前言粗颗粒α-Al_2O_3·3H_2O在空气中缓慢脱水时,首先生成α-Al_2O_3·H_2O,接着生成X-Al_2O_3,然后随着温度的提高,将按照各自的相变途径,最终转变成α-Al_2O_3。如果在真空中脱水,同样先生成α-Al_2O_3·H_2O,接着生成ρ-Al_2O_3,而不是生成X-Al_2O_3,但最终产物也是α-Al_2O_3。  相似文献   

3.
以尿素和Al(NO3)3·9H_2O为原料,通过水热反应法合成α-Al_2O_3前驱体纤维,研究了合成α-Al_2O_3前驱体纤维的形成机理和微观形貌以及不同α-Al_2O_3纤维含量对Al_2O_3复合陶瓷力学性能的影响。结果表明,α-Al_2O_3前驱体纤维主要由尿素水解产生的NH_4~+,OH~-,HCO_3~-离子和Al3+离子重新反应形成,纤维表面光滑,长度为3~6μm,长径比达到6∶1;经1100℃热处理后,α-Al_2O_3前驱体纤维分解形成α-Al_2O_3纤维,纤维表面由于气体的释放产生了许多小孔,长度稍短为1~5μm,长径比也达到6∶1。α-Al_2O_3纤维掺杂α-Al_2O_3复合陶瓷力学性能表明,当纤维含量为5.0%时,Al_2O_3复合陶瓷材料获得十分优异的综合室温力学性能:显微硬度为1907 HV,断裂韧性和抗弯强度达到5.8 MPa·m1/2和813 MPa。  相似文献   

4.
以NiCl_2·6H_2O为前驱体、(NH_4)_6Mo_7O_(24)·4H_2O和FeCl_3·6H_2O为助剂,通过浸渍、焙烧和NaBH_4还原制备高活性的NiMoFeB/γ-Al_2O_3催化剂。采用糠醛液相催化加氢为探针反应对其活性进行了评价。与NiMoB/γ-Al_2O_3相比,NiMoFeB/γ-Al_2O_3催化剂表现出更高的加氢活性和选择性,即使在较低温度60℃和5.0MPa条件下,加氢反应3.0h,糠醛转化率接近100%。考察Fe掺杂量和活性组分的负载顺序对催化剂活性的影响。结果表明,适宜的Fe掺杂量Mo+Ni与Fe原子比为20:1,Mo、Ni和Fe前驱体盐同时负载于γ-Al_2O_3时,催化剂活性最高。XRD研究表明,NiMoFeB/γ-Al_2O_3为无定形结构,活性组分在载体上分散均匀,具有良好的热稳定性。  相似文献   

5.
以γ-Al_2O_3和Mg(NO_3)2·6H_2O为原料,采用等体积浸渍法制备了Mg O/γ-Al_2O_3催化剂。XRD表征结果显示,随Mg O负载量增加,主要衍射峰的位置逐渐向低角度方向偏移,表明在γ-Al_2O_3载体表面形成了Mg Al_2O_4相。TEM结果显示,负载Mg O后催化剂的表面形貌发生改变。NH_3-和CO_2-TPD结果表明,随Mg O负载量的增加,催化剂表面酸性减弱、碱性增强。在常压、50℃的条件下评价了Mg O/γ-Al_2O_3催化剂对5,6,7,8-四氢-2-戊基-9,10-蒽醌(H_4AAQ)和2-戊基-9-蒽酮(AAN)及2-戊基蒽醌降解液(WS)的再生性能。结果表明,Mg O/γ-Al_2O_3催化剂的活性高于未改性的γ-Al_2O_3,并且随Mg O负载量增加而增加。当Mg O负载量达到30%(wt)时,H_4AAQ、AAN和WS的再生率均达到最大,较γ-Al_2O_3分别提高132%、25%和140%。  相似文献   

6.
本文采用水热法,以结晶氯化铝(AlCl_3·6H_2O)为铝源,NaOH为沉淀剂,合成了γ-Al_2O_3。以均苯四甲酸二酐(PMDA)和4,4'-二胺基二苯醚(ODA)为有机单体,在含有γ-Al_2O_3的N,N'-二甲基乙酰胺中逐步缩聚反应制备γ-Al_2O_3/PAA复合胶液,经过热亚胺化处理,制备纳米γ-Al_2O_3/PI复合薄膜。结果表明:在填充量较低时,γ-Al_2O_3在PI基体中分散良好。随着γ-Al_2O_3含量的增加,γ-Al_2O_3/PI复合薄膜热稳定性增加;拉伸强度和断裂伸长率先升高后降低,当γ-Al_2O_3掺杂量为5wt%时,达到最大值。  相似文献   

7.
以高纯硫酸铝铵为原料,热解制备了高纯γ-Al_2O_3粉体。利用X衍射分析、扫描电镜、差热失重、比表面积、粉体粒度、白度分析技术对高纯硫酸铝铵的热解过程及热解制备的高纯γ-Al_2O_3性能进行了研究。结果表明:随着热解温度的升高,高纯硫酸铝铵的热解过程为2NH4Al(SO_4)_2·12H_2O→Al_2(SO_4)_3→γ-Al_2O_3→α-Al_2O_3,在1200℃时转变为α-Al_2O_3,高纯γ-Al_2O_3获得温度范围为900~1100℃,在此温度范围内随温度的升高,高纯γ-Al_2O_3的比表面积和粒度都逐渐减小,分别从900℃的154.4m~2/g和35.39μm降低至1100℃的126.4m~2/g和26.08μm,而白度值逐渐增大,从900℃的92.8增大到1100℃的96.7。  相似文献   

8.
采用浸渍法将Cu O、Fe_2O_3负载在γ-Al_2O_3表面,制备高活性臭氧催化氧化催化剂,通过N_2吸附脱附曲线,X射线衍射、扫描电镜、X射线荧光光谱等方法对催化剂性能进行表征。与Cu O-Fe_2O_3/γ-Al_2O_3/O_3、H_2O_2/O_3、γ-Al_2O_3/O_3等工艺相比,采用Cu O-Fe_2O_(3/)γ-Al_2O_3/H_2O_2/O_3工艺降解制药二级生化出水效果最为明显,较高的催化氧化效率主要归功于H_2O_2的诱导作用和催化剂的催化作用的双重作用加速臭氧生成更多·OH。考察废水中COD去除率及影响降解的因素,包括催化剂投加量、p H、双氧水投加量、臭氧流量等,实验结果显示在催化剂投加量2g/L、废水p H为9、双氧水投加量3.6mg/L、臭氧流量1.0L/min条件下,COD去除率达到62.96%。催化剂循环使用10次后,COD去除率仍然可达到58%以上,并且金属离子浸出较少,其结构稳定。通过自由基捕获剂测试,探讨该催化氧化过程遵循自由基反应机理。  相似文献   

9.
氧化铝水合物中的Na2O及煅烧过程的行为   总被引:2,自引:0,他引:2  
Na_2O是非冶金级Al_2O_3的重要技术指标。应用D/Max-3BX射线衍射,IR-440红外光谱法研究了赋存于氧化铝水合物中的Na_2O在煅烧过程中的行为。β-Na_2O·Al_2O_3随温度升高而分解,最终是。α-Al_2O_3与Na_2O·11Al_2O_3共存。氧化铝水合物中的Na_2O含量增加,煅烧产品的α-Al_2O_3含量减少,比表面积降低。研究结果对生产及应用Al_2O_3的行业均有益。  相似文献   

10.
氧化铝是一种金属氧化物,它有表面活性、熔点高、硬度大、绝缘性强。一般由水合氧化铝(Al)2O_3·nH_2O),或铝盐[NH_4Al(SO_4)_2·12H_2O]煅烧制得,在煅烧过程中,有过渡态的结晶结构。如β-Al_2O_3,γ-Al_2O_3,θ-Al_2O_3等7—8种,在1000~1100℃形成最稳定的结晶结构,即α-Al_2O_3。像红宝石和兰宝石就是α-Al_2O_3结晶中掺入极微量铬和钛的产物。把氧化铝制成纤维形态,就是氧化铝纤  相似文献   

11.
本文,用理学X-射线衍射仪研究了富Al_2O_3区域Al_2O_3-Na_2O-CaO-SrO系的固态反应。实验结果表明,煅烧过程固态反应的最终物相组成为Na_2O·11Al_2O_3、CaO·6Al_2O_3、SrO·6Al_2O_3与α-Al_2O_3共存。  相似文献   

12.
分别以Ni(NO_3)_2·6H_2O和γ-Al_2O_3为二价和三价阳离子源,采用尿素水解法在γ-Al_2O_3载体上合成Ni-Al-LDH水滑石结构,并对其进行了XRD和FT-IR表征。以此为前驱体通过高温焙烧制得Ni-Al-LDH/γ-Al_2O_3催化剂。与等体积法制备的Ni/γ-Al_2O_3催化剂相比,Ni-Al-LDH/γ-Al_2O_3催化剂在甲烷干重整中不仅具有更高的催化活性,而且能够在一定程度上抑制逆水煤气反应。在反应温度为800℃,空速为48L·g~(-1)·h~(-1)的条件下,反应20h未失活,Ni-Al-LDH/γ-Al_2O_3催化剂上甲烷和二氧化碳转化率较Ni/γ-Al_2O_3催化剂约高8%。  相似文献   

13.
采用溶液法制备了NaB_5O_8·4H_2O,利用XRD和FT-IR等对产品进行表征,结合TG-DTA热重分析法对NaB_5O_8·4H_2O的热分解进行分析。为进一步确认NaB_5O_8·4H_2O在热降解过程中失去的为结晶水,而未破坏NaB_5O_8的化学结构,根据TG失重的温度,将NaB_5O_8·4H_2O置于相应温度的马弗炉中进行焙烧,并用XRD和FT-IR对将焙烧产物的结构进行物相表征,并最终得到NaB_5O_8·4H_2O的热分解过程。结果表明,NaB_5O_8·4H_2O热分解过程大致分为三个阶段:第一阶段硼酸钠失去两个结晶水,第二阶段硼酸钠失去一个结晶水,第三阶段硼酸钠失去一个结晶水形成无水硼酸钠。  相似文献   

14.
本文用磷酸(H_3PO_4)和氢氧化铝(Al(OH)_3)或氧化铝(α-Al_2O_3)合成了三聚磷酸二氢铝。原料配比,P_2O_5/Al_2O_3为3—6摩尔,控制温度300。C,产品为白色粉末。x—射线分析结果证明组成为AlH_2P_3O_(10)·2H_2O,热分析结果证明其脱水过程为:160°CAlH_2P_3O_(10)·2H_2O脱去两个结晶水变为AlH_2P_3O_(10),550℃再脱去一个结构水变为Al(PO_3)_3。  相似文献   

15.
为了制备具有良好性能的MgAlON-MgAl_2O_4复合材料以替代含铬耐火材料,以电熔镁铝尖晶石(粒度1~3、≤1和≤0.074 mm)、活性α-Al_2O_3粉(2~5μm)、Al粉(≤0.074 mm)、Mg O粉(≤0.044 mm)为原料,采用原位生成MgAlON的方法制备了MgAlON-MgAl_2O_4复合材料。通过调整配料中α-Al_2O_3粉+Al粉+Mg O混合粉(三者的质量比固定为76∶12∶12)的加入量(在整个固态配料中的质量分数分别为15%、20%、25%和30%)来调整MgAlON的设计生成量,研究了MgAlON设计生成量对MgAlON-MgAl_2O_4复合材料致密度、常温强度、物相组成和显微结构等的影响。结果表明:1)随着α-Al_2O_3-Al-Mg O混合粉加入量的增加,复合材料中MgAlON相生成量增多;但当α-Al_2O_3+Al+Mg O混合粉加入量达到30%(w)时,复合材料中有副产物Al4O4C生成。2)随着α-Al_2O_3+Al+Mg O混合粉加入量从15%(w)增加到25%(w),复合材料中MgAlON晶粒发育程度逐渐变好,与MgAl_2O_4颗粒的结合也逐渐紧密;但当α-Al_2O_3+Al+Mg O混合粉加入量达到30%(w)时,复合材料基质中有明显微气孔出现,致密性和均匀性变差。3)随着α-Al_2O_3+Al+Mg O混合粉加入量的增加,复合材料的烧后体积密度和显气孔率变化不大,常温耐压强度和常温抗折强度变化明显,烧成线变化率由微收缩变为微膨胀。4)综合考虑,α-Al_2O_3+Al+Mg O混合粉加入量为25%(w)的试样的性能最佳。  相似文献   

16.
掌握Fe~(2+)/H_2O_2体系O_2的生成路径,可为避免H_2O_2无效分解,开发经济高效的Fe~(2+)/H_2O_2体系利用技术指明方向。采用添加自由基捕获剂的方法,探究Fe~(2+)/H_2O_2体系内各种自由基对O_2生成速率的影响,进而确定O_2的生成路径。结果表明:Fe~(2+)/H_2O_2体系内不会产生大量O_2~-·,O_2~-·不是生成O_2的主要反应物质;·OH被全部捕获后,体系中仍产生大量HO_2·,但此时无O_2生成,证明生成O_2的反应由·OH和HO_2·两种自由基直接参与。分析认为反应·OH+HO_2=H_2O+O_2是Fe~(2+)/H_2O_2体系内O_2生成的主要路径。控制Fe~(2+)/H_2O_2体系定向生成·OH,抑制HO_2·的产生,是提高Fe~(2+)/H_2O_2体系中H_2O_2利用率的有效手段。  相似文献   

17.
采用水热法制备了片状Ca_2B_2O_5·H_2O水合硼酸盐前驱体,利用XRD、FI-IR及SEM等手段对样品进行了表征,利用TG-DTA热重分析法对Ca_2B_2O_5·H_2O的脱水热分解进行了分析。结合热分析结果和不同温度下焙烧产物的物相表征结果,研究上述硼酸钙的热分解过程,结果表明,热分解过程大致分为三个阶段:第一阶段硼酸钙失去表面的吸附水,第二阶段硼酸钙失去结晶水形成无定形的无水硼酸钙,第三阶段无水硼酸钙由无定形转化为结晶。  相似文献   

18.
以CaSO_4·2H_2O为原料,柠檬酸铵(C_6H_(17)N_3O_7)为添加剂,在水热温度130℃,搅拌速率60r·min~(-1),反应2h的条件下制备α-CaSO_4·0.5H_2O。采用X射线衍射仪(XRD)、场发射扫描电子显微镜(SEM)、场发射透射电子显微镜(TEM)、热重分析仪(TG)、差热示差扫描量热仪(DSC)、傅里叶红外光谱仪(FT-IR)和X射线光电子能谱测定元素结合能(XPS)表征α-CaSO_4·0.5H_2O晶体的形貌和结构,探讨不同浓度C_6H_(17)N_3O_7对α-CaSO_4·0.5H_2O的晶体和结晶过程的影响。研究结果表明,C_6H_(17)N_3O_7会抑制α-CaSO_4·0.5H_2O沿c轴的生长,随着添加C_6H_(17)N_3O_7浓度的增大,α-CaSO_4·0.5H_2O的形貌由针状向柱状转变,晶体的直径由1.5~2μm增至10~12μm,长径比由80:1~100:1降至2:1~3:1。并且在CaSO_4·2H_2O向α-CaSO_4·0.5H_2O转化过程中,C_6H_(17)N_3O_7的添加导致其诱导时间和转化周期延长,生长速率减慢,晶体的热稳定性提高。  相似文献   

19.
采用柠檬酸络合法制备一系列不同铜铈比的Cu-Ce-O/γ-Al_2O_3催化剂,用XRD、H2-TPR对其进行表征,采用连续固定床微反装置对Cu-Ce-O/γ-Al_2O_3催化剂CO催化氧化活性进行评价。结果表明,Cu-Ce-O/γ-Al_2O_3催化剂的XRD图谱中除归属于γ-Al_2O_3的晶相峰外,还出现CuO和CeO_2的晶相峰。高温水热引起活性组分CeO_2的晶粒聚集、长大和尖晶石结构CuAl2O4物质的生成;CuO-CeO_2之间的共生共存与相互作用,使得Cu-Ce-O/γ-Al_2O_3催化剂中具有非完整结构的[Cu2+1-xCu+x][O1-12x12x]增多,Cu+离子和氧空位增多,有利于其H2-TPR还原峰温度向低温区偏移,有利于提高其CO的催化氧化活性,使得Cu-Ce-O/γ-Al_2O_3催化剂的TCO50和TCO90降低。Cu与Ce物质的量比为5∶5制备的Cu-Ce-O/γ-Al_2O_3-55催化剂的TCO50和TCO90分别降至最低的162℃和199℃,表明此时的Cu-Ce-O协同效应最佳;CuO-CeO_2二相的共生共存与相互作用有利于减少高温水热环境下活性组分的聚集和晶粒长大,有利于Cu-Ce-O/γ-Al_2O_3催化剂能够保持较高的CO催化氧化活性。  相似文献   

20.
以Al_2O_3和CeO_2-Al_2O_3载体,制备了x%Ag/CeO2-Al_2O_3(x=0.5%、1%和2%)催化剂,并用于催化氧化甲醛。研究发现:Ag的含量对催化剂催化氧化甲醛性能的影响显著,当Ag为1%时,催化剂1%Ag/CeO_2-Al_2O_3在60℃可以将甲醛完全氧化成H_2O和CO_2。H2-TPR和O2-TPD表征揭示:催化剂的低温还原能力和丰富的表面活性氧物种提高了催化剂催化氧化甲醛的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号