首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2024/7075异种铝合金搅拌摩擦焊的晶体取向演化   总被引:1,自引:0,他引:1       下载免费PDF全文
周俊  张津  计鹏飞 《焊接学报》2016,37(8):59-62
使用光学显微镜、电子背散射衍射(EBSD)对比研究了2024/7075异种铝合金搅拌摩擦焊(FSW)接头及母材的组织特征、晶界特征和织构的演化.结果表明,后退侧热力影响区晶粒的小角度晶界含量较母材明显增大而前进侧热力影响区晶粒的小角度晶界含量与母材相比没有明显变化,焊核区发生了动态再结晶,大角度晶界含量明显增加.后退侧2024铝合金为弱取向组织,前进侧7075铝合金母材、热影响区以及热机影响区具有较强的S织构{123}<634>、黄铜织构{011}<211>和R织构{124}<211>,焊核区为等轴再结晶晶粒,没有明显的择优取向.  相似文献   

2.
在强制冷却环境下,对2024铝合金进行了搅拌摩擦加工,并采用电子背散射衍射技术对加工后各区域的晶粒特征及演化进行了研究。结果表明,从母材区、热机影响区到搅拌区,晶粒尺寸逐渐减小,搅拌区组织明显细化,且分布均匀,平均晶粒尺寸为1.89μm。母材区大角度晶界居多,而热机影响区小角度晶界居多,搅拌区取向差分布呈现双峰现象。母材区为{124}211R取向,热机影响区主要为{001}110R-cube取向,搅拌区表现出较强的{113}110取向,热机影响区晶粒取向与搅拌区晶粒取向相近,表明在低温高应变条件下连续动态再结晶是搅拌区晶粒细化的主要机制。拉伸试样的断裂位置位于热机影响区,这与{001}110R-cube取向的可动滑移系数量和滑移难易程度一致。  相似文献   

3.
对5A06铝合金进行搅拌摩擦焊(FSW),使用光学显微镜观察焊接接头不同区域的微观组织;用维氏硬度计测试焊接接头的硬度分布情况。结果表明:焊接接头受搅拌针的搅拌及轴肩产热作用表现出不同的流动和组织特征,可将其划分为4个区域,从两侧的基体到焊缝中心分别是母材区(BM)、热影响区(HAZ)、热机影响区(TMAZ)和焊核区(NZ);母材区的组织经过轧制处理呈现出拉长、粗大的现象;热影响区处晶粒受焊接热循环影响,晶粒尺寸与母材处相比有所长大,晶界也明显粗化;热机影响区组织的晶粒受机械搅拌的程度不同,由远及近呈现出由大到小的分布;焊核区的组织为细小的等轴晶,且焊缝底部的晶粒比顶部的晶粒细小;在前进侧,热机影响区与焊核区的分界线清晰,过渡区域狭窄;而在后退侧,热机影响区与焊核区的分界模糊,金属塑性流动性较差,过渡区域较宽;焊缝硬度沿横截面呈n形分布,前进侧硬度比后退侧高。  相似文献   

4.
采用带螺纹搅拌头对8 mm厚Mg-Gd-Zn稀土镁合金板进行搅拌摩擦焊接试验。结果表明,当焊接速度增大时,焊接接头的抗拉强度和伸长率增加,屈服强度减小;拉伸试样的焊核区均为细小的等轴晶组织,强化相MgGd_3、GdZn沿晶界弥散分布;热机影响区为塑性流变组织,其织构形态与母材的有较大差异;焊接速度增大时,焊缝晶粒尺寸减小。  相似文献   

5.
7A52铝合金搅拌摩擦焊焊缝的组织分析   总被引:11,自引:6,他引:5  
通过对7A52铝合金进行大量的搅拌摩擦焊接试验,对焊缝的宏观组织、微观组织及显微硬度进行分析.焊缝可分为热影响区、热机影响区和焊核等三个区域.其中,焊核为明显的再结晶等轴晶粒,晶粒明显细化;热机影响区出现了晶粒粗化现象,由母材的细纤维组织变形为具有一定弧度的弯曲粗纤维组织;热影响区的晶粒与母材相似,但出现了晶粒粗化现象.沿焊缝横截面的显微硬度的分布呈高-低-高-低-高的趋势,其中焊缝顶部的硬度达到了母材的硬度,硬度最低处位于前进侧的热影响区区域.  相似文献   

6.
通过金相组织观察、断口扫描分析、拉伸试验和显微硬度测试等分别研究了6082-T6和5083铝合金搅拌摩擦焊(FSW)接头的微观组织和力学性能.结果表明,接头断面组织可分为焊核区(WN)、热机影响区(TMAZ)、热影响区(HAZ)、母材区(BM)四个区域.焊核区为动态再结晶的细小等轴晶组织;热机影响区为回复晶粒组织,晶粒产生了较大的弯曲变形;在热影响区发生了晶粒粗化现象,晶粒形态与母材相似.两种铝合金搅拌摩擦焊接头的拉伸断口均呈韧性断裂特征,接头断裂位置为热影响区的前进侧,表明热影响区为接头最薄弱的区域.力学性能测试表明,6082和5083铝合金接头的抗拉强度分别为242 MPa和301.6 MPa,分别达到母材本身抗拉强度的76.8%和88.7%;两种接头的显微硬度分布曲线均存在一个最低值,该最低值位于前进侧的热影响区.  相似文献   

7.
通过6063铝合全的搅拌摩擦焊试验,分析了其焊缝横截面组织的宏观形貌和金相图,并对焊缝进行横向拉伸性能试验.试验表明:带梯形螺纹的圆锥形搅拌针及凹端面搅拌头,能有效增加焊缝塑化材料的流动性,易于形成内部无缺陷的焊缝;焊缝横向组织可分为母材区、热影响区、热机影响区、焊核(动态再结晶区)等4个区域;焊核区塑性变形剧烈,组织为动态再结晶的细小等轴晶;热机影响区为回复晶粒组织,以大弯曲变形结构为特征;热影响区仅发生组织晶粒粗化现象,晶粒与母材相似,没有发生明显的塑性变形;各区之间的分界面明显,尤其是前进侧的焊核区与热机影响区的分界面,该分界面易于出现空洞和沟槽缺陷;焊接质量取决于诸多焊接工艺参数,可以通过工艺参数优化试验来找到最佳焊接参数匹配区间.  相似文献   

8.
2219-T87铝合金搅拌摩擦焊接头组织与力学性能   总被引:8,自引:4,他引:4       下载免费PDF全文
采用搅拌摩擦焊方法对8mm厚2219-T87铝合金进行了焊接.对接头的宏观形貌、微观组织、显微硬度及断口形貌进行了分析.结果表明,焊核区为细小的等轴晶粒,晶粒尺寸远小于母材;热机影响区发生了弯曲变形;热影响区组织出现了明显粗化.前进边热机影响区和焊核区形成明显分界线,后退边相对模糊.搅拌摩擦焊对接头各区域沉淀相分布形态有重要影响.接头室温拉伸强度可以达到母材的70%以上.沿焊缝横截面的显微硬度的分布显示,硬度最低点位于后退侧热影响区区域,断裂位置位于后退侧热影响区处,接头的断裂形式为韧性断裂.  相似文献   

9.
搅拌摩擦焊及氩弧焊接头的组织形貌   总被引:1,自引:0,他引:1  
对1060铝合金进行了搅拌摩擦焊和氩孤焊,对比分析了2种工艺方法对铝合金焊接接头组织演变行为的影响,结果表明:双面氩弧焊接头组织表现出明显的铸态组织,并且靠近熔池的柱状晶沿母材向对接中心线显著增大,所产生的内应力增加了晶界开裂的倾向;搅拌摩擦焊接头比氩弧焊接头具有更为细小的晶粒和狭窄的焊接热影响区。焊核区由于动态再结晶具有细小的等轴晶粒,旁边存在一个特殊的组织形貌——热机影响区域。  相似文献   

10.
主要研究了2A12铝合金与3A21铝合金对接的搅拌摩擦焊工艺,并对焊后试样进行了金相观察。结果表明,焊核区为近球形的晶粒,与母材相比焊核区晶粒细小、分布均匀。在热循环作用下,返回侧2A12铝合金热影响区、热机影响区晶粒与前进侧3A21铝合金相比明显长大。在焊缝前进侧热影响区与母材存在明显的界线。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号