首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Diffuse reflectance measurements were made over the wavenumber range of 4000-20,000 cm−1 at room temperature on monoclinic and stabilised ZrO2, together with Y2Ti2O7 having the pyrochlore structure, all of which were doped with U and sintered in various atmospheres. X-ray photoelectron spectroscopy measurements were also carried out on selected samples. In monoclinic and stabilised zirconia, U exhibited valence states of +4 and/or +5, depending on the sintering atmosphere and the presence of appropriate charge compensators. Using both diffuse reflectance and X-ray photoelectron spectroscopy, U was also observed as mainly U4+ and/or U5+ in U-doped Y2Ti2O7 sintered at 1400 °C in air or Ar, although a small amount of U6+ also appeared to be present in some U-doped Y2Ti2O7 samples heated in air.  相似文献   

2.
Tetravalent U, Np and Pu can be substituted by ceramic methods into the rare earth site of xenotime and monazite in air atmospheres using Ca ions as charge compensators, while no evidence of penta- or hexavalent actinide ions was found. Some Pu3+ and Np3+ can be incorporated in xenotime samples fired in a reducing atmosphere.  相似文献   

3.
With a genuine spent fuel solution (a dissolver solution), a laboratory-scale reprocessing experiment of an extraction–separation process was performed using mixer-settlers as extractors. In the experiment, n-butyraldehyde was utilized as a reducing reagent of Np(VI)O22+ to Np(V)O2+ for the purpose to distinguish Np(VI)O22+ from Np4+. From the Np concentration in the aqueous phase, Np would be extracted from the dissolver solution together with U and Pu. The scrutiny of Np behavior was performed utilizing 66 cases of calculation results by a Japan Atomic Energy Agency open extraction simulation code, the Program for Advanced Extraction with Radiation Effect Calculation–Lightened version. From the scrutiny, the authors found that the calculation result with 60% of Np4+ in the dissolver solution represented the best experimental extraction–separation behavior of Np. Therefore, it was supposed that the dissolver solution contained sufficient proportion of Np4+ to affect the extraction–separation behavior of Np.  相似文献   

4.
Oxygen potentials of homogenous (Pu0.2U0.8)O2−x and (Am0.02Pu0.30Np0.02U0.66)O2−x which have been developed as fuels for fast breeder reactors were measured at temperatures of 1473-1623 K by a gas equilibrium method using an (Ar, H2, H2O) gas mixture. The measured oxygen potentials of (Pu0.2U0.8)O2−x were about 25 kJ mol−1 lower than those of (Pu0.3U0.7)O2−x measured previously and were consistent with the values calculated by Besmann and Lindemer’s model. The measured oxygen potentials of (Am0.02Pu0.30Np0.02U0.66)O2−x were slightly higher than those of MOX without minor actinides. No fuel-cladding chemical interaction is affected significantly by adding their minor actinides.  相似文献   

5.
Pellets of sintered ZrN were studied to optimize the mechanical properties and microstructures needed in nitride fuel pellets, using ZrN as a surrogate for actinide nitrides and as potential component in low fertile and inert matrix fuels. Samples were prepared via sintering in either Ar or N2 (with and without 6% H2) and at 1300 °C or 1600 °C. A significant difference in the hardness was measured ranging from 1000 (Kg/mm2) in samples sintered at 1600 °C in argon to 100 (Kg/mm2) in samples sintered at 1300 °C in nitrogen. Samples with 6% hydrogen added to the sintering environment experienced a decrease in hardness, as well as an increase in intergranular cracking as compared to samples sintered without hydrogen, suggesting hydrogen embrittlement. Grain size was more uniform in samples sintered in pure Ar as compared to Ar-H2, while the latter had a larger fraction of high angle grain boundaries than the former. Cracking around indents had a clear tendency to follow high angle boundaries, which were found to be intrinsically weak in ZrN.  相似文献   

6.
Properties of Pu–Al alloys were investigated in connection with development of pyrochemical methods for reprocessing of spent nuclear fuel. Electroseparation techniques in molten LiCl–KCl are being developed in ITU to group-selectively recover actinides from the mixture with fission products. In the process, actinides are electrochemically reduced on solid aluminium cathodes, forming solid actinide–aluminium alloys. This article is focused on electro-chemical characterisation of Pu–Al alloys in molten LiCl–KCl, on electrodeposition of Pu on solid Al electrodes and on determination of chemical composition and structure of the formed alloys. Cyclic voltammetry and chronopotentiometry were used to study Pu–Al alloys in the temperature range 400–550 °C. Pu is reduced to metal in one reduction step Pu3+/Pu0 on an inert W electrode. On a reactive Al electrode, the reduction of Pu3+ to Pu0 occurs at a more positive potential due to formation of Pu–Al alloys. The open circuit potential technique was used to identify the alloys formed. Stable deposits were obtained by potentiostatic electrolyses of LiCl–KCl–PuCl3 melts on Al plates. XRD and SEM–EDX analyses were used to characterise the alloys, which were composed mainly of PuAl4 with some PuAl3. In addition, the preparation of PuCl3 containing salt by carbochlorination of PuO2 is described.  相似文献   

7.
Crystal grain growth and crystallization of lithium metatitanate with excess Li (Li2+xTiO3+y), which is expected as an advanced ceramic breeder for a future DEMO fusion reactor, were studied in this paper. By the observation of sintered pellets using scanning electron microscope, it was shown that the Li2.1TiO3+y specimens, which have small grains (1–2 μm) and narrow size distribution, can be obtained by sintering in the temperature range from 1000 to 1100 °C. The observation also showed the rapid grain growth in the Li2.1TiO3 specimens sintered above 1150 °C. The changes in the crystal structure and the phase transformation with the increase of sintering temperature were also investigated by means of powder X-ray diffraction. Finally, the relationship between the grain growth and the phase state at high temperature was discussed.  相似文献   

8.
The behavior of Mn2+ ions doped into the crystal lattice of Zn2SiO4 is closely related to the luminescent properties of Zn2SiO4:Mn2+ as a color-emitting phosphor. The combined Rietveld refinement using X-ray and neutron powder diffraction was used to determine the site preference and the amount of Mn2+ ions in Zn2SiO4:Mn2+. Of possible cation-disorder models, the best Rietveld refinement was obtained from the model that Mn2+ ions partially substituted for Zn2+ ions in two crystallographically non-equivalent Zn sites. The final converged weighted R-factor, Rwp, and the goodness-of-fit indicator, S (=Rwp/Re) were 8.12% and 2.28, respectively. The occupancy of Mn2+ ions for the two non-equivalent Zn sites was 0.034(4) and 0.003(2), respectively. The refined model described the crystal structure in space group R?3 (No. 148) with Z = 18, a (=b) = 13.9612(1) Å, c = 9.3294(1) Å and γ = 120°.  相似文献   

9.
Li2TiO3 pebbles were successfully fabricated by using a freeze drying process. The Li2TiO3 slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at ?10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li2TiO3 pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined.  相似文献   

10.
In the present work, liquid phase sintered SiC (LPS-SiC) was proposed as an inert matrix for the particle dispersed inert matrix fuel (IMF). The fuel particles containing plutonium and minor actinides were substituted with pure yttria stabilized zirconia beads. The LPS-SiC matrix was produced from the initial mixtures prepared using submicron sized α-SiC powder and oxide additives Al2O3, Y2O3 in the amount of 10 wt.% with the molar ratio 1Y2O3/1Al2O3. Powder mixtures were sintered using two sintering methods; namely conventional high temperature sintering and novel spark plasma sintering at different temperatures depending on the method applied in order to obtain dense samples. The phase reaction products were identified using X-ray diffraction (XRD) and microstructures were investigated using light microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) techniques. The influence of powder mixing methods, sintering temperatures, pressures applied and holding time on the density of the obtained pellets was investigated. The samples sintered by slow conventional sintering show lower relative density and more pronounced interaction between the fuel particles and matrix in comparison with those obtained with the fast spark plasma sintering method.  相似文献   

11.
Al2O3–14 wt%B4C composites with 0–1 wt% C addition were sintered in Ar at 1550–1650 °C. The influence of the C additive on the B loss, densification behavior, and microstructure of the Al2O3–B4C composites were investigated. The results show that there are B2O3, H3BO3 and Al18B4O33 exist between Al2O3 and B4C interface, which result in B loss because of B2O3's high vapor tension at above 1500 °C. The presence of Al18B4O33 grains formed by chemical reaction of Al2O3 with surface oxides on B4C inhibit the densification of pellets by reducing the specific free surface energy of the Al2O3. However, the added C eliminates those oxides to reduce B loss because of its higher activity than B4C, and it also coarsens Al2O3 grain although the density of pellets is decreased by gas products.  相似文献   

12.
The effects of hydrogen peroxide, H2O2, on UO2 corrosion is investigated in aerated deionized water in two types of situations. The H2O2 species is either added to water or produced by radiolysis at UO2/H2O interfaces. The concentrations vary in the range 10−5–10−1 mol l−1. The radiolysis is induced by irradiating the UO2/H2O interfaces with a He2+-beam emerging from the UO2 discs into the solutions. Both the evolution of the aqueous solutions and the UO2 surfaces are characterised. In both types of experiments, the alteration of UO2 results in the formation of the same secondary phase, an hydrated uranium peroxide called studtite (UO2(O)2 · 4H2O). However, the uranium release at the interface differs strikingly. It is much higher when H2O2 is produced by irradiation than when it is simply added. Furthermore, it varies in opposite direction as a function of the H2O2 concentration. This gives evidence that the chemistry at the UO2 interface under irradiation differs significantly from the chemistry induced by simply adding H2O2 to the solution. Rutherford backscattering spectrometry is used to determine the growth rate of the corrosion layer. For H2O2 addition, the layer thickness increases with increasing leaching time, although as time increases, the U release tends towards zero. It is possible to establish the first empirical equation relating the corrosion rates to the added H2O2 concentrations. For H2O2 radiolytic production, the growth is continuous as irradiation time increases but the growth rate seems to decrease as the layer grows and to reach a limit.  相似文献   

13.
The proton-type crystalline zirconium phosphate, HZr2(PO4)3, was prepared by a thermal decomposition of NH4Zr2(PO4)3 at about 450 °C, where NH4Zr2(PO4)3 was obtained in advance by a hydrothermal synthesis using a mixed solution of ZrOCl2, H3PO4 and H2C2O4. Cs or Sr ion was immobilized to HZr2(PO4)3 by mixing HZr2(PO4)3 with an aqueous solution of CsNO3 or Sr(NO3)2 under the molar ratio CsNO3/HZr2(PO4)3 = 1.0 or Sr(NO3)2/HZr2(PO4)3 = 0.5. The mixtures were treated thermally in an autoclave at different temperatures from 200 to 275 °C and Arrhenius equation was applied to the Cs and Sr immobilization process to HZr2(PO4)3. The activation energy for the immobilization process of Cs or Sr was estimated as 179 kJ mol?1 and 186 kJ mol?1, respectively.  相似文献   

14.
The electrochemical behavior of neptunium nitride, NpN, in the LiCl-KCl eutectic melt containing NpCl3 at 450, 500 and 550°C was investigated from the viewpoint of the application of electrochemical refining in a fused salt to nitride fuel cycle. The electrochemical dissolution of NpN began nearly at the potential theoretically evaluated, though this reaction was irreversible owing to small partial pressure of N2 in the salt and the reaction rate was slow. Under the electrolysis in the NpCl3-LiCl-KCl eutectic melt, NpN was dissolved into the salt as Np3+ at the anode, and Np metal was deposited at the cathode. About 0.5 g of Np metal was obtained by heating the deposit containing the salt at 800°C for 3.6 ks.  相似文献   

15.
Solvent extraction of Np(V) from HNO3 solution was experimentally studied with n-octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) as an extractant mixed with TBP and n-dodecane. In the low HNO3 concentration, the Np(V) is weakly extractable, but effectively extracted in the high HNO3 concentration (>4M) due to the disproportionation of Np(V) to Np(IV)and Np(VI). The distribution ratio of Np was increased by use of H2O2as a reductant of Np(V). More than 95% of Np was extracted with 0.8 M H2O2 in 2.2 M HNO3 solution. It was shown that most of the Np extracted is in tetravalent state as expected from redox mechanism. The Np(IV) extracted in the organic phase was effectively stripped to the aqueous phase with H2C2O4.  相似文献   

16.
A W-2Y2O3 material was developed in collaboration with the Plansee Company (Austria). An ingot of the material having approximate dimension of 95 mm × 20 mm was fabricated by mixing the elemental powders followed by pressing, sintering and hot forging. The microstructure of the W-2Y2O3 composite was investigated using transmission electron microscopy (TEM). The microhardness was studied using nano-indentation technique. We observed that the W-grains having a mean size of about 1 μm already formed and these grains contain very low density of dislocations. The size of the yttria particles was between 300 nm and 1 μm and the Berkovich hardness was about 4.8 GPa. The specimens were irradiated/implanted with Fe and He ions at JANNuS facility located at Orsay/Saclay, France. The TEM disks kept were irradiated/implanted at 300 and 700 °C using Fe and He ions with an energy of 24 and 2 MeV, respectively. The calculated radiation dose was about 5 dpa produced by Fe ions and total He content is 75 appm at both 300 and 700 °C. From the TEM investigation of irradiated samples, few radiation loops are present on the W grains, whereas on yttria particles, the radiation induced damages appear as voids. Berkovich hardness of the irradiated sample is higher than that of the non-irradiated sample. Results on the microstructure and microhardness of the ion-irradiated W-2Y2O3 composites are presented in detail.  相似文献   

17.
A study of the effects of ion irradiation of organically modified silicate thin films on the loss of hydrogen and increase in hardness is presented. NaOH catalyzed SiNawOxCyHz thin films were synthesized by sol–gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H+ or 250 keV N2+ at fluences ranging from 1 × 1014 to 2.5 × 1016 ions/cm2. Elastic Recoil Detection (ERD) was used to investigate resulting hydrogen concentration as a function of ion fluence and irradiating species. Nanoindentation was used to measure the hardness of the irradiated films. FT-IR spectroscopy was also used to examine resulting changes in chemical bonding. The resulting hydrogen loss and increase in hardness are compared to similarly processed acid catalyzed silicate thin films.  相似文献   

18.
The sintering behaviour of UO2–50%PuO2 pellets has been studied using a dilatometer in inert, reducing and oxidising atmospheres. The shrinkage begins at a much lower temperature in oxidising atmosphere such as CO2 and commercial N2. The shrinkage rate was found to be maximum for pellets sintered in N2 atmosphere. The mechanism for the initial stage of sintering was found to be volume diffusion for both oxidising and reducing atmospheres. The activation energy for the initial stages of sintering was found to be 365 and 133 kJ/mol for Ar–8%H2 and CO2 atmospheres, respectively. The activation energy obtained using the Dorn method matches well with that obtained using the rate controlled sintering process. The lower activation energy obtained in the oxidising atmosphere is explained with the help of models available in the literature.  相似文献   

19.
The effect on the crystalline structure and ferroelectric properties of ion implantation in SrBi2Ta2O9(SBT) ferroelectric thin films has been investigated. 25 keV H+, 140 keV O+ with doses from 1 × 1014/cm2 to 3 × 1015/cm2 were implanted into the Sol–Gel prepared SBT ferroelectric thin films. The X-ray diffraction patterns of SBT films show that no difference appears in the crystalline structure of as-H+-implanted SBT films compared with as-grown films, H+ and O+ co-implanted SBT films show an obvious degradation of crystalline structure. Ferroelectric properties measurements indicate that both remnant polarization and coercive electric field of H+ implanted SBT films decrease with increasing the implantation dose. The disappearance of ferroelectricity was found in the H+, O+ co-implanted SBT films at room temperature. The great recovery of hydrogen-induced degradation in SBT films was obtained with O+ implantation using a heat-target-implantation technique.  相似文献   

20.
Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at λ = 1.5 μm, which could be used as an optical amplifier or waveguide laser. We have focused on the structure of Er:LiNbO3 layers created by 330 keV erbium ion implantation (fluences 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm?2 1) in the X, Z and two various Y crystallographic cuts of LiNbO3. Five hours annealing at 350 °C was applied to recrystallize the as-implanted layer and to avoid clustering of Er. Depth distribution of implanted Er has been measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. Defects distribution and structural changes have been described using the RBS/channelling method. Data obtained made it possible to reveal the relations between the crystallographic orientation of the implanted crystal and the behaviour during the restoration process. The deepest modified layer has been observed in the perpendicular Y cut, which also exhibits the lowest reconstruction after annealing. The shallowest depth of modification and good recovery after annealing were observed in the Z cut of LiNbO3. Since Er-depth profiles changed significantly in the perpendicular Y cut, we suppose that the crystal structure recovery inhibits Er mobility in the crystalline structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号