首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以滇牡丹籽为原料,以萃取率为指标,用正交实验法分析讨论超临界CO2萃取过程中萃取时间、萃取温度、萃取压力及CO2流量对滇牡丹籽油萃取率的影响。采用GC-MS技术对滇牡丹籽油脂肪酸成分进行分析,并与栽培品种凤丹牡丹籽油的脂肪酸成分进行比较。结果表明:超临界CO2萃取滇牡丹籽油的最佳工艺条件为萃取时间60 min、萃取温度40℃、萃取压力45 MPa、CO2流量20 kg/h,在此条件下滇牡丹籽油萃取率为27.34%。滇牡丹籽油中不饱和脂肪酸的含量为89.34%,其中亚麻酸72.26%,亚油酸14.25%。滇牡丹籽油中不饱和脂肪酸的含量与凤丹牡丹籽油的很接近,然而其亚麻酸、油酸的含量高于凤丹牡丹籽油的。  相似文献   

2.
以石榴籽为原料,对超临界CO2流体萃取石榴籽油的工艺条件进行了研究。通过单因素试验,研究了萃取压力、萃取温度和萃取时间对石榴籽油得率的影响。在单因素试验的基础上,通过正交试验确定了超临界CO2流体萃取石榴籽油的最佳工艺条件。结果表明,超临界CO2流体萃取石榴籽油最佳工艺条件为:萃取压力40 MPa,萃取温度55℃,萃取时间80 min,分离釜Ⅰ温度60℃,压力10 MPa,分离釜Ⅱ温度35℃,压力6 MPa。在最佳工艺条件下,石榴籽油得率为18.6%。  相似文献   

3.
以百香果为原料,在单因素试验基础上,采用Box-Behnken响应面分析,优化超临界CO_2萃取百香果籽油的工艺,并对百香果籽油的体外抗氧化活性进行研究。结果表明,超临界CO_2萃取百香果籽油的最佳工艺为萃取温度53.1℃,萃取压力33.9 MPa,萃取时间3.6h,百香果籽出油率值为26.95%,所得百香果籽油具有较好的还原力,且呈量效关系,对DPPH·的清除能力达80%。超临界CO_2萃取百香果籽油工艺稳定可行,提取的百香果籽油具有抗氧化活性,是一种潜在可用的天然抗氧化资源。  相似文献   

4.
以牡丹籽为原料,以牡丹籽仁的得率和牡丹籽仁油的出油率为指标,采用单因素试验或正交试验依次优化牡丹籽的超声辅助碱液脱皮和牡丹籽仁的超临界CO_2萃取的工艺。结果表明,在NaOH溶液质量分数为7%、超声温度为40℃、超声时间为40 min、超声功率为200 W的条件下,牡丹籽的脱皮效果最好,牡丹籽仁的得率达50%;在牡丹籽仁粒度为40目、含水率为8%、CO_2流量为45 L/h、萃取压力为35 MPa、萃取温度为45℃、萃取时间为2 h的条件下,牡丹籽仁油的出油率达30.4%,其中不饱和脂肪酸含量(油酸23.3%、亚油酸24.3%、α-亚麻酸44.4%)达92.0%,且不含反式脂肪酸。  相似文献   

5.
为保证超临界萃取技术高效萃取高品质茶籽油,运用微波前处理加以辅助,利用正交设计得到最佳微波处理条件为:原料水分7.8%,粉碎粒度为过100目筛,微波处理120s。再用响应面法对其萃取压力、温度和时间等工艺条件进行了优化分析,得到最佳工艺条件为:在33MPa压力和45℃温度下连续萃取时间2h。此条件下的萃取效率高达92.76%,远高于未经微波处理的方法。该工艺所得茶籽油VE含量高达182.4mg/kg,只需简单脱酸即达到压榨一级茶籽油标准。  相似文献   

6.
为有效提取金花葵籽油,采用响应面法优化超临界CO_2萃取金花葵籽油工艺条件。在单因素试验基础上,选择萃取压力、萃取温度、萃取时间为影响因素,以金花葵籽油得率为响应值,采用中心组合Box-Behnken试验设计建立数学模型进行响应面分析,并对金花葵籽油脂肪酸组成进行分析。结果表明:超临界CO_2萃取金花茶籽油最佳工艺条件为萃取压力32 MPa、萃取温度40℃、萃取时间120 min,金花葵籽油得率为(22.9±0.2)%;金花葵籽油中脂肪酸组成以不饱和脂肪酸为主,占76.12%,其中棕榈油酸0.58%、亚油酸35.65%和油酸39.89%。超临界CO_2萃取可作为萃取金花葵籽油的有效方法,金花葵籽油可作为食用保健油开发。  相似文献   

7.
《粮食与油脂》2015,(11):34-37
以亚临界丁烷为溶剂提取牡丹籽油,以牡丹籽油萃取得率为考察指标,利用L4(23)正交试验法优化亚临界流体萃取牡丹籽油的最佳工艺条件,对所得牡丹籽油进行脂肪酸及理化指标分析。试验结果表明,在优化条件下,牡丹籽提取率达到98.1%,所得牡丹籽油α–亚麻酸含量为41.54%,具有较好的品质。  相似文献   

8.
牡丹籽油超临界CO2萃取工艺优化及抗氧化活性的研究   总被引:3,自引:5,他引:3  
以牡丹籽为原料,利用超临界CO2萃取法提取牡丹籽油。采用单因素试验对影响牡丹籽油萃取率的3个因素(温度、压力和时间)进行了考察;以萃取率为响应值,以温度、压力和时间3个主要影响因素设计正交实验(L9 33),对提取条件较为温和、对油脂抗氧化性成分破坏较小的超临界提取工艺进行了优化;采用DPPH法和亚铁离子(Fe2 )诱导的过氧化体系法,以油酸和亚油酸为对照,研究了压榨法和超临界CO2萃取法两种工艺提取的牡丹籽油清除DPPH自由基和抗脂质过氧化能力的差异。结果表明,萃取时间对萃取率影响最大,其次为萃取温度,萃取压力对萃取率影响最小;超临界CO2萃取法提取牡丹籽油的优化工艺条件为:温度35℃、压力30 MPa、时间60 min,牡丹籽油的萃取率为28.86%;牡丹籽油的抗氧化性质与脂溶性抗氧化剂类似;超临界油清除DPPH自由基的能力明显高于压榨油,而经Fe2 诱导的脂质过氧化程度则低于压榨油,说明超临界CO2提取的牡丹籽油品质优于压榨油,建议采用超临界CO2萃取技术提取高附加值牡丹籽油。  相似文献   

9.
该研究以人参籽为原料,采用超临界CO2流体技术萃取人参籽油。以单因素实验为基础,通过正交试验优化萃取人参籽油工艺参数条件,并测定人参籽油脂肪酸组成。试验结果表明,在萃取压力45 MPa、萃取温度45℃、萃取时间2.5 h、夹带剂用量10%优化工艺条件下,人参籽油得率为48.90%。经检测,人参籽油脂肪酸组成不饱和脂肪酸占99%以上,其中油酸含量极高,可达94.70%。  相似文献   

10.
芜菁籽油的超临界CO2萃取及脂肪酸成分分析   总被引:1,自引:0,他引:1  
采用超临界CO2萃取技术对芜菁籽油进行萃取,运用响应面法优化了工艺条件.结果表明超临界CO2萃取芜菁籽油的最佳工艺条件为:萃取压力31.65 MPa,萃取温度46.10℃,萃取时间80.40 min,在此条件下芜菁籽油得率为32.55%.芜菁籽油经气相色谱-质谱分析,饱和脂肪酸含量为7.70%,以棕榈酸(2.63%)为主;不饱和脂肪酸含量为88.35%,主要以芥酸(47.18%)、油酸(17.53%)和亚油酸(8.43%)为主.  相似文献   

11.
超临界CO2萃取花椒籽油工艺的响应面优化   总被引:2,自引:0,他引:2  
利用响应面法对花椒籽油的超临界CO2萃取工艺进行优化.在单因素试验基础上,以萃取压力、萃取温度、萃取时间为影响因素,花椒籽油提取率为响应值,根据中心组合(Box-Benhnken)试验设计原理采用3因素3水平的响应面分析法,确定各工艺条件对提取率的影响.结果表明,超临界CO2萃取花椒籽油的最佳工艺条件为:萃取压力37 MPa,萃取温度45℃,萃取时间65 min,花椒籽油提取率可达19.65%.  相似文献   

12.
响应面法优化超临界CO2萃取韭菜籽油   总被引:3,自引:0,他引:3  
采用超临界CO2流体技术对韭菜籽油进行萃取,运用响应面法优化了萃取工艺条件.结果表明,萃取压力、萃取温度和萃取时间3个因素对韭菜籽油得率都有显著性影响,压力和时间的交互作用极显著,但压力和温度、温度和时间的交互作用不显著;优化的最佳工艺条件为:萃取温度40.40 ℃,萃取时间86.70 min,萃取压力22.25 MPa,此时得率为17.52%.韭菜籽油中饱和脂肪酸以棕榈酸(7.4%)为主,占脂肪酸总量的8.9%;不饱和脂肪酸主要为亚油酸(70.1%)和油酸(20.2%),占脂肪酸总量的91.1%.  相似文献   

13.
在单因素实验基础上,以萃取温度、萃取压力、萃取时间为影响因素,以萃取率为指标,运用响应面实验设计法对超临界CO2萃取玫瑰茄籽油工艺条件进行优化。结果表明,在萃取温度50℃、萃取压力28MPa、萃取时间110min的条件下,玫瑰茄籽油提取率可达22%以上。  相似文献   

14.
超声辅助水代法提取牡丹籽油工艺研究   总被引:1,自引:0,他引:1  
采用超声辅助水代法提取牡丹籽油,并对其脂肪酸组成进行分析。研究了超声时间、超声功率、超声温度和液料比4个主要因素对牡丹籽油提取率的影响。在单因素实验的基础上,采用响应面法对超声提取工艺进行了优化。结果表明,超声辅助水代法提取牡丹籽油的最佳工艺条件为:超声时间54 min,温度45℃,液料比8.5:1(mL/g),超声功率960 W,在此条件下,产油率可达28.850 6%。脂肪酸成分分析结果显示,水代法牡丹籽油主要脂肪酸成分为亚麻酸甲酯(40.04%)、亚油酸甲酯(40.37%)等,不饱和脂肪酸占总脂肪酸含量比大于85%。  相似文献   

15.
采用超临界CO2流体从打瓜籽中萃取打瓜籽油。以打瓜籽油得率及亚油酸提取量为指标,采用单因素试验研究打瓜籽粉碎粒度、萃取压力、萃取温度、萃取时间对超临界CO2流体萃取打瓜籽油的影响。通过正交试验得到最佳萃取条件为:粉碎粒度80目,萃取压力30 MPa,萃取温度40℃,萃取时间20 min。在最佳萃取条件下,打瓜籽油得率为42.42%,亚油酸提取量为185.77 mg/g。  相似文献   

16.
使用超临界二氧化碳技术对经过超声-微波处理过的黄柏中的挥发油进行萃取,并对萃取工艺进行响应面优化。在单因素预实验的基础上,以萃取压力、萃取温度、萃取时间为响应因素,黄柏挥发油的萃取量为响应值,根据中心组合(Box-Behnken)实验设计原理,采用三因素三水平的响应面分析法,确定各工艺条件对萃取量的影响,并用扫描电子显微镜(SEM)对萃取前、未超声-微波处理超临界萃取后及超声-微波处理超临界萃取后的黄柏进行比较观察,对萃取效果进行了微观解释。结果表明,经过超声-微波处理过的黄柏中的挥发油超临界二氧化碳萃取最佳工艺条件为:萃取压力为34MPa,萃取温度为41℃,萃取时间为66min,萃取率达6.03%。  相似文献   

17.
采用微波复合酶法水萃牡丹籽油,在单因素试验基础上通过正交试验,对酶解条件和微波条件分别进行工艺优化。结果表明:在纤维素酶、果胶酶、中性蛋白酶添加量分别为3%、0.5%和0.07%组成的复合酶条件下,最佳酶解条件为酶解pH 5.5、酶解温度55℃、酶解时间4 h;最佳微波条件为微波温度50℃、微波功率700 W、微波时间6 min。在最佳工艺条件下,牡丹籽油得率为24.59%。  相似文献   

18.
优化牡丹籽饼中油脂的超声辅助提取工艺。在单因素试验的基础上,采用Plackett-Burman(PB)设计对影响牡丹籽饼中油脂提取的7个因素(粒度、液料比、浸提时间、浸提温度、超声温度、超声时间、超声功率)进行筛选。根据PB试验结果,选择粒度、浸提温度、液料比、超声温度为考察因素,运用BBD响应面法对牡丹籽饼中油脂的超声辅助提取工艺进行优化。结果表明:牡丹籽饼中油脂的最佳提取工艺条件为粒度80目、液料比27∶1、浸提温度45℃、浸提时间4 h、超声温度42℃、超声功率320 W、超声时间35 min,在此条件下,牡丹籽油得率为11.15%。  相似文献   

19.
超临界CO2萃取樱桃仁油及GC-MS分析   总被引:1,自引:0,他引:1  
以樱桃仁为原料,利用超临界CO2流体萃取樱桃仁油,在单因素试验的基础上,采用Box-Behnken设计方法,研究萃取压力、萃取时间、萃取温度及其交互作用对樱桃仁油得率的影响,确定了超临界CO_2流体萃取樱桃仁油的最佳工艺参数,并利用气相色谱-质谱(GC-MS)分析了樱桃仁油的脂肪酸组成。结果表明,超临界CO_2流体萃取樱桃仁油的最佳工艺参数为萃取压力43 MPa、萃取时间199 min、萃取温度44℃、装料量35 g,在此条件下,樱桃仁油的得率为(51.41±0.45)%。GC-MS分析表明,樱桃仁油的主要脂肪酸成分是油酸(52.55%),亚油酸(29.93%),棕榈酸(9.52%),硬脂酸(3.93%)。  相似文献   

20.
以麦芽糊精和阿拉伯胶混合物为壁材,牡丹籽油为芯材,采用响应面法研究牡丹籽油微胶囊喷雾干燥制备工艺。通过单因素实验和响应面实验确定牡丹籽油微胶囊最佳制备工艺条件为:壁材配比3.28∶1、芯材与壁材比1∶6、均质压力42.09 MPa、进风温度213.82℃、进料速度8.89 m L/min。在此条件下,制备的微胶囊包埋率可达在90.93%;且微胶囊产品气味纯正,颗粒表面平整光滑,细小均匀,具有良好的流散性,牡丹籽油含量为13.52%,包埋效果好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号