共查询到20条相似文献,搜索用时 46 毫秒
1.
以Gd2O3、Yb2O3、Y2O3和ZrO2为原料,通过固相合成法制备5Gd2O3-6Yb2O3-10YSZ热障涂层粉末,又称GYbYSZ。以X射线衍射仪(XRD)和场发射扫描电镜对材料相结构和显微组织进行表征。用激光热导率测试仪和热膨胀仪测试样品热导率和热膨胀系数。结果表明,1600℃制备材料物相为高温相c相;稀土氧化物改性后YSZ块体材料在1000℃下热导率达到1.51 W/(m·K);1200℃热膨胀系数为11.25×10-6/K;在室温至1500℃范围内,不发生相变,高温稳定性优异。 相似文献
2.
3.
4.
热障涂层是高温下具有良好隔热性能的陶瓷涂层,在燃气轮机、内燃机、火箭发动机和其他高温热防护方面有重要应用。稀土或碱土金属氧化物稳定的氧化锆热障涂层材料已应用近60 a,其中最常用的是氧化钇稳定的氧化锆(YSZ)。近20 a,国内外发现了许多新材料,如稀土锆酸盐、铝酸盐和钽酸盐等。与YSZ相比,新材料在高温稳定性、热导率、抗烧结或热膨胀性能方面有优势,但断裂韧性低、成分复杂、单一陶瓷层的热循环寿命短。为了提高新型热障涂层的寿命,要严格控制涂层的制备过程、保持化学计量比,采用双陶瓷层结构的涂层。 相似文献
5.
热障涂层(thermal barrier coating, TBC)是降低航空发动机、燃气轮机热端部件表面温度的关键技术。随着发动机服役温度升高,TBC 工作环境更加恶劣,传统的 Y2O3部分稳定ZrO2(yttria partially stabilized zirconia, YSZ)TBC 面临着相变、高温烧结、环境沉积物(CMAS)腐蚀等严重问题,服役寿命大幅下降,严重威胁发动机安全运行,急需开发新型 TBC 材料。随着计算材料学和机器学习技术的发展,传统上依靠实验来寻找新型 TBC 材料的方法逐渐被理论计算所取代。第一性原理作为一种有效分析方法,能够大幅度降低新材料的研发周期与成本,对新型 TBC 材料的开发起到极大推进作用。利用第一性原理计算可以预测 TBC 材料的热物理性能、力学性能以及 TBC 在复杂服役环境下的稳定性。本文总结了第一性原理在新型 TBC 材料开发、涂层 CMAS 腐蚀行为和机理研究方面的应用进展,并对第一性原理在 TBC 研究领域的发展前景进行展望。 相似文献
6.
热障涂层的高温失效问题是热障涂层材料研究的重要命题,本文对国内外学者在热障涂层高温失效试验、失效机制、失效的动态监测和寿命预测方面的研究进展进行了综述。热障涂层的失效主要源自涂层中存在的热生长氧化物(TGO)的失效,文中总结出了国内外学者对TGO研究的几个重点方面,以期为热障涂层的高温失效问题提供研究思路。 相似文献
7.
8.
9.
10.
针对化工生产中的易氧化、高温腐蚀和易磨损等因素,提出适用于化工过程装备的材料体系设计方案。在方案中将材料设计思路创造性地应用到陶瓷热障涂层,提出了对其进行结构设计的总体思路,并对主要设计参数的设计方法进行了初步研究。 相似文献
11.
《Ceramics International》2023,49(4):6429-6439
Rare earth monosilicate (RE2SiO5) is one of the most promising candidates as an environmental barrier coating (EBC) for SiCf/SiC ceramic matrix composites. But single-component RE2SiO5 is hard to meet the multiple and harsh performance requirements of EBC which brings a significant challenge to their applications. Based on our previous research on single-component RE2SiO5 ceramics, (Ho0.4Yb0.3Lu0.3)2SiO5 solid solution was designed and successfully fabricated in this work. Doping of multiple RE elements endows (Ho0.4Yb0.3Lu0.3)2SiO5 with excellent thermal insulation properties and matched thermal expansion coefficient with SiCf/SiC substrates. In addition, it exhibits lower elastic modulus and comparable hardness than that of single-component RE2SiO5. (Ho0.4Yb0.3Lu0.3)2SiO5 also presents good resistance to calcium-magnesium alumino-silicates (CMAS) corrosion. Rational composition design allows (Ho0.4Yb0.3Lu0.3)2SiO5 to retain the merits of single-component RE2SiO5 while taking advantage of the solid solution effect. The results of this work suggest (Ho0.4Yb0.3Lu0.3)2SiO5 as a promising EBC candidate. 相似文献
12.
《Ceramics International》2022,48(5):6691-6697
The speed of sound is a critical parameter in the test of mechanical and thermal properties. In this work, we proposed a testing method to obtain the elastic modulus of silica aerogel from the sound speed formulas. The solid thermal conductivity of the silica aerogel is experimentally measured for predicting the sound speeds, and then the elastic modulus is calculated based on the elasticity sound speed model. The experimental data of the solid thermal conductivity of silica aerogels with different densities are employed and the obtained elastic modulus is fitted as a power-law exponential function of the density. Two existing sound speed models and three groups of available experimental data are also employed to validate the present fitting relation, and good agreement is obtained for the silica aerogel in the density range of 150–350 kg/m3. The fitting formula can also be extended to estimate the elastic modulus of the glass fiber-reinforced silica aerogel composite. The results show that the elastic modulus of the aerogel composite is sensitive to the glass fiber volume fraction, while the thermal conductivity is weakly dependent on the glass fiber volume fraction at room temperature in the studied range of fiber volume fraction. 相似文献
13.
Chengguan Zhang Yun Fan Juanli Zhao Hongfei Chen Luchao Sun Guang Yang Bin Liu 《Journal of the European Ceramic Society》2021,41(6):3687-3695
Gadolinium zirconate is a promising next-generation thermal barrier coating material and its CaO-MgO-Al2O3-SiO2 (CMAS) resistance needs to be further increased. In this study, three gadolinium zirconate coatings with different Gd/Zr ratios are successfully prepared via atmospheric plasma spray using amorphous feedstock. Their mechanical properties and corrosion resistance are investigated. The Young’s moduli and hardness of as-sprayed coatings are comparable with the gadolinium zirconate coatings reported in previous literature. Furthermore, the higher Gd content promotes the formation of the Gd-apatite and the depletion rate of CMAS corrosion. As a result, the infiltration depth of Gd2.3Zr1.7O6.85 coating after 24 h annealing decreases up to 35 % compared with those of Gd2.0Zr2.0O7.0 and Gd1.8Zr2.2O7.1, exhibiting an enhanced long-term corrosion resistance. This work develops a viable fabrication method to produce non-stoichiometric gadolinium zirconate coatings with tailorable CMAS corrosion resistance and is expected to promote the future design of thermal barrier coatings with long service life. 相似文献
14.
《Journal of the European Ceramic Society》2020,40(8):3122-3128
Lanthanum zirconate is a promising thermal barrier coating material owing to its excellent thermophysical properties and La plays the key role in its corrosion resistance. Here, an amorphous precursor is used as raw feedstock material so as to synthesize lanthanum zirconate coatings with tailorable composition by atmospheric plasma spray (APS). Three lanthanum zirconate coatings of La1.7Zr2.3O7.15, La2.0Zr2.0O7.0 and La2.3Zr1.7O6.85 are fabricated. Furthermore, the corrosion resistance of the as-sprayed coatings against CaO-MgO-Al2O3-SiO2 at 1250℃ is investigated. The increased La content promotes the formation of a sealing layer of the crystalline Ca2La8(SiO4)6O2 apatite, which slows down the penetration of molten CaO-MgO-Al2O3-SiO2. Therefore, the infiltration rate of the La2.3Zr1.7O6.85 coating decreased up to 42.6 % compared with the other two coatings. This work develops a feasible preparation strategy to control the La composition for the improved corrosion resistance, which is expected to guide the future coating design and synthesis for the materials with big composition changes during the APS process. 相似文献
15.
《Journal of the European Ceramic Society》2017,37(2):811-821
Sintering neck is a featured microstructure that may have significant effect on the sintering behaviour of air-plasma-sprayed thermal barrier coating system (APS TBCs). Based on experimental observations, a multi-necking wedge-shaped model for the sintering of APS TBCs was proposed by considering the sintering stress as surface tension and by employing the thermal-elasto-viscoplastic constitutive relation. Deformation pattern, stress distribution, sintering induced shrinkage, stiffening behaviour and temperature field were analysed by using finite element method. It is shown that the formation of sintering neck significantly affects thermal and mechanical properties related to sintering. Mechanisms of thermal and mechanical degradation induced by sintering were further elucidated. 相似文献
16.
The yttrium heavily doped La2Zr2O7 solid solutions coatings, with a Y to La molar ratio of 1:1, have been successfully prepared by air plasma spraying technique. The evolution of phase composition, phase structure and thermal conductivity of such coatings with annealing at 1300?°C has been investigated. The results show that, a single pyrochlore structure can be retained for coating after annealing up to 48?h, beyond which the fluorite phase begins to precipitate out. By comparing thermal conductivities to those undoped counterparts at a similar porosity level, we find a considerably flat thermal conductivity versus temperature (k-T) curve, suggesting the existence of a strong phonon scattering source, which is inferred as rattlers. In addition, after the segmentation of the fluorite phase, the thermal conductivity of corresponding coatings rises considerably, indicating that the fluorite phase has a higher thermal conductivity than that of pyrochlore phase. Moreover, while the as-sprayed coatings show a clear indication of radiative thermal conduction beyond 1000?°C, the thermal conductivity of annealed coatings do not show such an uprising trend after 1000?°C, suggesting that the radiative thermal conduction has been greatly suppressed. The reason is proposed as the formation of local dipoles due to local enrichment of certain elements influences the propagation of electromagnetic waves and thus suppresses the radiative thermal conduction. 相似文献
17.
Zhilin Tian Jie Zhang Tianyin Zhang Xiaomin Ren Wanpeng Hu Liya Zheng Jingyang Wang 《Journal of the European Ceramic Society》2019,39(4):1463-1476
Rare earth (RE) silicates X1-RE2SiO5 (RE = La, Nd, Sm, Eu, and Gd) are comprehensively investigated as promising thermal barrier coating candidates. The mechanical, thermal, and corrosion resistance properties are evaluated by theoretical exploration and experimental measurement. Mechanical properties and corrosion resistance to calcium-magnesium alumino-silicates (CMAS) melts of X1-RE2SiO5 are linearly correlated with ionic radius of RE elements. Elastic moduli increase with the decrease of ionic radius of RE3+. X1-RE2SiO5 with larger RE3+ exhibits better resistance to molten melts corrosion. For thermal properties, they are not obviously sensitive to RE species. All X1-RE2SiO5 demonstrate low thermal conductivities and their magnitudes are significantly modified by concentration of defects. Thermal expansion coefficients of X1-RE2SiO5 are more or less close and are compatible with the value of superalloy. The results highlight X1-RE2SiO5 as potential thermal barrier coating candidates with overall properties. 相似文献
18.
《Ceramics International》2022,48(8):11173-11180
In this study, first of all, a metallic bond layer was coated on the metal substrate using the HVOF method. Then, Gd and Yb doped La2Zr2O7 powders, which were specially produced to obtain a low thermal conductivity value, were coated on the metallic bond layer by atmospheric plasma spraying method. The coatings were produced in single-layer and double-layer designs using YSZ as the buffer layer. In the microstructure analysis, it was observed that the coatings exhibited the characteristic microstructure properties of the materials produced by atmospheric plasma spraying method. In the phase analysis, it was found that the Gd and Yb doped La2Zr2O7 was in the form of defect fluorite type structure after plasma spraying. The thermal conductivity of the YSZ coating ranged from 0.88 to 1.00 W/mK, while the thermal conductivity of the doped La2Zr2O7 coatings was measured between 0.38 and 0.68 W/mK. Especially, the lowest thermal conductivity values were obtained in the double-layer Gd doped coating. As a result of modeling these coatings on the piston surface of a diesel engine using the finite element method, it was found that the maximum and minimum surface temperatures of the pistons increased by 69% and 60%, respectively. There was also a reduction of up to 6.5% in the temperature of the piston substrate surface. 相似文献
19.
《Ceramics International》2016,42(6):6817-6824
Layered ceramic systems with designed stacks of dense and porous layers were investigated as alternative for thermal barrier protection system (TBPs). This approach gives the possibility to obtain low thermal conductivity with the impact protection of dense external layers whilst maintaining the relatively high mechanical properties. Different stacking configurations have been proposed utilizing in total a combination of up to 30 dense/porous layers. Porous layers were produced with two different nominal porosities 20 vol% and 40 vol%. For comparison uni-axial pressed samples with the same porosity level have been prepared. Thermal and mechanical characterization was performed on samples of tape cast (with different stacking designs) and uni-axial pressed fully stabilized zirconia TBPs. The layered fully stabilized zirconia (8YSZ) has 15–30 % lower thermal conductivity in comparison with the uni-axial pressed samples, nevertheless by the same Young`s modulus value. The results of the thermal and mechanical observation shows, that such an approach can be beneficial as an alternative for future thermal barrier protection systems. 相似文献
20.
《Ceramics International》2016,42(15):16822-16832
High-temperature stability of SPS YSZ coatings with the columnar and deep vertically cracked (DVC) structures and their corrosion resistance to 56 wt% V2O5+44 wt% Na2SO4 molten salt mixture were investigated. Both the columnar and DVC-structured YSZ coatings were sintered at 1000 °C, but a significant increase in porosity in combination with significant reductions in Vickers’ hardness and Young's modulus were observed at the temperatures from 1200 °C to 1400 °C. The DVC-structured YSZ coating exhibited superior corrosion resistance against the molten salt mixture attack to the columnar-structured one due to its higher density behaving as a sealing protective top layer at 950 °C. 相似文献