首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Undular bores and shocks generated by dam-break flows or tsunamis are examined considering nonhydrostatic pressure and dispersive effects in one- and two-horizontal-dimensional space. The fully nonlinear Boussinesq-type equations based on a weakly nonhydrostatic pressure assumption are chosen as the governing equations. The equation set is solved by a fourth-order accurate finite-volume method with an approximate Riemann solver. Several typical benchmark problems such as dam-break flows and tsunami wave fission are tested in one- and two-horizontal-dimensional space. The computed results by the Boussinesq-type model are at least as accurate as the results by the hydrostatic shallow water equations. This is particularly evident near the steep front of the wave, where frequency dispersion can play an important role. The magnitude of this nonhydrostatic pressure and dispersive effect near the front is quantified, and the engineering implications of neglecting these physics, as would be done through the use of a hydrostatic model, are discussed.  相似文献   

2.
Finite-Difference TVD Scheme for Computation of Dam-Break Problems   总被引:1,自引:0,他引:1  
A second-order hybrid type of total variation diminishing (TVD) finite-difference scheme is investigated for solving dam-break problems. The scheme is based upon the first-order upwind scheme and the second-order Lax-Wendroff scheme, together with the one-parameter limiter or two-parameter limiter. A comparative study of the scheme with different limiters applied to the Saint Venant equations for 1D dam-break waves in wet bed and dry bed cases shows some differences in numerical performance. An optimum-selected limiter is obtained. The present scheme is extended to the 2D shallow water equations by using an operator-splitting technique, which is validated by comparing the present results with the published results, and good agreement is achieved in the case of a partial dam-break simulation. Predictions of complex dam-break bores, including the reflection and interactions for 1D problems and the diffraction with a rectangular cylinder barrier for a 2D problem, are further implemented. The effects of bed slope, bottom friction, and depth ratio of tailwater∕reservoir are discussed simultaneously.  相似文献   

3.
Two numerical models for 2D flood flows are presented. One model is first-order accurate and another is second-order accurate. Roe's numerical flux is used to develop the first-order accurate model, while second-order accuracy, in space and time, is obtained by using the Lax-Wendroff numerical flux. A simple operator splitting is found to yield the same results as that obtained by using more complicated, and thus, time consuming, operator splitting. Roe's approximate Jacobian is used for conservative properties and Harten and Hyman's procedure is followed for the entropy inequality condition. Flux limiter is used in the second-order accurate model that removes oscillations while maintaining the order of accuracy. The models are verified against available experimental data of a 2D flood wave due to partial dam-break. Numerical experiments are conducted to verify the models' ability to correctly predict behavior of the free surface, in addition to prediction of depth and velocity.  相似文献   

4.
High-resolution finite volume schemes used to predict mass transport and free surface flows utilize limiters such as Minmod, Double Minmod, and Superbee to prevent spurious oscillations commonly associated with second-order accurate schemes. These limiters effectively switch between the classical Lax-Wendroff, Warming-Beam, and Fromm schemes, or amplified versions of these schemes that artificially increase gradient magnitudes to minimize damping of high frequency solution components. A Von Neumann analysis illustrates that gradient or slope amplification reduces numerical dissipation, but also increases the phase error and should therefore be cautiously used. The Double Minmod limiter closely mimics the Fromm scheme and possesses better phase accuracy than the Minmod and Superbee limiters. Near sharp solution gradients, slope amplification used by the Double Minmod and Superbee limiters reduces artificial smearing. The Minmod limiter does not use slope amplification and therefore yields the most solution smearing. Results of model tests show that the combined attributes of the Double Minmod limiter yield more accurate predictions of mass transport and circulation zones in shallow water than those of other limiters such as Minmod and Superbee.  相似文献   

5.
Upwind Conservative Scheme for the Saint Venant Equations   总被引:1,自引:0,他引:1  
An upwind conservative scheme with a weighted average water-surface-gradient approach is proposed to compute one-dimensional open channel flows. The numerical scheme is based on the control volume method. The intercell flux is computed by the one-sided upwind method. The water surface gradient is evaluated by the weighted average of both upwind and downwind gradients. The scheme is tested with various examples, including dam-break problems in channels with rectangular and triangular cross-sections, hydraulic jump, partial dam-break problem, overtopping flow, a steady flow over bump with hydraulic jump, and a dam-break flood case in a natural river valley. Comparisons between numerical and exact solutions or experimental data demonstrated that the proposed scheme is capable of accurately reproducing various open channel flows, including subcritical, supercritical, and transcritical flows. The scheme is inherently robust, stable, and monotone. The scheme does not require any special treatment, such as artificial viscosity or front tracking technique, to capture steep gradients or discontinuities in the solution.  相似文献   

6.
The note demonstrates the application of a pure Lagrangian numerical method to dam-break flows by solving the St. Venant equations. The method is developed based on the smoothed particle hydrodynamics. It is easy to apply and is shown to be capable of providing accurate simulations for mixed flow regimes with strong shocks.  相似文献   

7.
The results of a survey aimed at comparing the performances of first-order and total variation diminishing (TVD) second-order upwind flux difference splitting schemes, first-order space-centered schemes, and second-order space-centered schemes with the TVD artificial viscosity term are reported here. The schemes were applied to the following dam-break wave cases: in a dry frictionless horizontal channel; in a dry, rough and sloping channel; and in a nonprismatic channel. Among first-order schemes, the diffusive scheme provides only slightly less accurate results than those obtained by the Roe scheme. For TVD second-order schemes, no significant difference between the upwind scheme and central schemes are reported. In the case of a dam break in a dry frictionless horizontal channel, the second-order schemes were two- to five-fold more accurate than the diffusive scheme and Roe’s scheme. These differences in scheme performances drastically reduce when the results obtained for the rough sloping channel test and for the nonprismatic channel test are analyzed. In particular, the accuracy of the diffusive and Roe’s schemes is similar to second-order schemes when such features of dam break wave, relevant from an engineering viewpoint, like wave peak arrival time and maximum water depths, are considered.  相似文献   

8.
Simplified and detailed two-dimensional modeling approaches to transient flows in urban areas, based on finite-volume solution of the shallow water equations, are compared. Through the example of a dam-break flow in a simplified urban district for which accurate laboratory data exist, various methods are compared: (1) the solution of the two-dimensional shallow water equations with a detailed meshing of each street; (2) the use of a porosity concept to represent the reduction of water-storage and conveyance in the urban area; and (3) the representation of urban areas as zones with higher friction coefficient. Accuracy and adequacy of each method are assessed through comparison with the experiments. Among the simplified models, the porosity approach seems to be the most adequate as head losses at the entrance and the exit of the city are considered.  相似文献   

9.
A discontinuous Galerkin method for the solution of the dam-break problem is presented. The scheme solves the shallow water equations with spectral elements, utilizing an efficient Roe approximate Riemann solver in order to capture bore waves. The solution is enhanced by a projection limiter that eliminates spurious oscillations near discontinuities. The main advantage of the model is the flexibility in approximating smooth solutions with high-order polynomials and resolving at the same time discontinuous shock waves. Furthermore, the finite element discretization is capable of handling complex geometries and producing correct results near the boundaries. Both the h- and p-type extensions are investigated for the one-dimensional dam break, and the results are verified by comparison with analytical solutions. The application to a two-dimensional dam-break problem shows the efficiency and stability of the method.  相似文献   

10.
This work deals with the suitability of two-dimensional shallow water equations for the numerical simulation of supercritical free surface flows in bends, when the usual hypothesis of small width/curvature radius ratio does not hold. Here, a very reliable and accurate finite-volume, Godunov-type scheme is adopted for the numerical integration of the governing equations. Comparison with a selected set of experimental laboratory data and asymptotic analytical solutions shows that several aspects concerning the physics of the phenomenon are well reproduced, such as the blocking of the stream when the Froude number of the undisturbed flow is not large enough and the bend is sufficiently sharp, while maximum water depth in the bend is systematically underestimated.  相似文献   

11.
Numerical Solution of Boussinesq Equations to Simulate Dam-Break Flows   总被引:1,自引:0,他引:1  
To investigate the effect of nonhydrostatic pressure distribution, dam-break flows are simulated by numerically solving the one-dimensional Boussinesq equations by using a fourth-order explicit finite-difference scheme. The computed water surface profiles for different depth ratios have undulations near the bore front for depth ratios greater than 0.4. The results obtained by using the Saint Venant equations and the Boussinesq equations are compared to determine the contribution of individual Boussinesq terms in the simulation of dam-break flow. It is found that, for typical engineering applications, the Saint Venant equations give sufficiently accurate results for the maximum flow depth and the time to reach this value at a location downstream of the dam.  相似文献   

12.
A two-dimensional (2D) simulation of flooding from the 1928 failure of St. Francis Dam in southern California is presented. The simulation algorithm solves shallow-water equations using a robust unstructured grid Godunov-type scheme designed for wetting and drying and achieves good results. Flood extent and flood travel time are predicted within 4 and 10% of observations, respectively. Representation of terrain by the mesh is identified as the dominant factor affecting accuracy, and an iterative process of mesh refinement and convergence checks is implemented to minimize errors. The most accurate predictions are achieved with a uniformly distributed Manning n = 0.02. A 50% increase in n increases travel time errors to 25% but has little effect on flood extent predictions. This highlights the challenge of a priori travel time prediction but robustness in flood extent prediction when topography is well resolved. Predictions show a combination of subcritical and supercritical flow regimes. The leading edge of the flood was supercritical in San Francisquito Canyon, but due to channel tortuosity, the wetting front reflected off canyon walls causing a transition to subcritical flow, considerably larger depths, and a standing wave in one particular reach that accounts for a 30% fluctuation in discharge. Elsewhere, oblique shocks locally increased flood depths. The 2D dam-break model is validated by its stability and accuracy, conservation properties, ability to calibrate with a physically realistic and simple resistance parametrization, and modest computational cost. Further, this study highlights the importance of a dynamic momentum balance for dam-break flood simulation.  相似文献   

13.
A total variation diminishing Runge Kutta discontinuous Galerkin finite-element method for two-dimensional depth-averaged shallow water equations has been developed. The scheme is well suited to handle complicated geometries and requires a simple treatment of boundary conditions and source terms to obtain high-order accuracy. The explicit time integration, together with the use of orthogonal shape functions, makes the method for the investigated flows computationally as efficient as comparable finite-volume schemes. For smooth parts of the solution, the scheme is second order for linear elements and third order for quadratic shape functions both in time and space. Shocks are usually captured within only two elements. Several steady transcritical and transient flows are investigated to confirm the accuracy and convergence of the scheme. The results show excellent agreement with analytical solutions. For investigating a flume experiment of supercritical open-channel flow, the method allows very good decoupling of the numerical and mathematical model, resulting in a nearly grid-independent solution. The simulation of an actual dam break shows the applicability of the scheme to nontrivial bathymetry and wave propagation on a dry bed.  相似文献   

14.
Implicit Bidiagonal Scheme for Depth-Averaged Free-Surface Flow Equations   总被引:1,自引:0,他引:1  
A general fast implicit bidiagonal numerical scheme, based on the MacCormack's predictor-corrector technique requiring the inversion of only block bidiagonal matrices, has been developed and subsequently applied for subcritical and supercritical free-surface flow calculations. The model has been applied to depth-averaged steady flows. There are two main advantages of the proposed method: the technique has fast convergence and utilizes a body fitted nonorthogonal local coordinate system to simulate irregular geometry flows. The model is used to analyze a wide variety of hydraulic engineering problems including flows in a converging-diverging subcritical flume, supercritical expansions at various Froude numbers, and supercritical converging chutes. For each of these test cases, the calculated results are compared with experimental data. The comparisons with measurements as well as with other numerical solutions show that the proposed method is comparatively accurate, fast, and reliable.  相似文献   

15.
Although many numerical techniques such as approximate Riemann solvers can be used to analyze subcritical and supercritical flows modeled by hyperbolic-type shallow-water equations, there are some difficulties in practical applications due to the numerical unbalance between source and flux terms. In this study, a revised surface gradient method is proposed that balances source and flux terms. The new numerical model employs the MUSCL–Hancock scheme and the HLLC approximate Riemann solver. Several verifications are conducted, including analyses of transcritical steady-state flows, unsteady dam break flows on a wet and dry bed, and flows over an irregular bathymetry. The model consistently returns accurate and reasonable results comparable to those obtained through analytical methods and laboratory experiments. The revised surface gradient method may be a simple but robust numerical scheme appropriate for solving hyperbolic-type shallow-water equations over an irregular bathymetry.  相似文献   

16.
The accuracy, stability, and reliability of a numerical model based on a Godunov-type scheme are verified in this paper, through a comparison between calculated results and observed data for the Malpasset dam-break event, which occurred in southern France in 1959. This event is an unique opportunity for code validation because of the availability of extensive field data on the flooding wave due to the dam failure. In the code the shallow water equations are discretized using the finite volume method, and the numerical model allows second order accuracy, both in space and time. The classical Godunov approach is used. More specifically, the Harten, Lax, and van Leer Riemann solver is applied. The resulting scheme is of high resolution and satisfies the total variation diminishing condition. For the numerical treatment of source terms relative to the friction slope, a semi-implicit technique is used, while for the source terms relative to the bottom slope a new explicit method is developed and tested.  相似文献   

17.
Computational Dam-Break Hydraulics over Erodible Sediment Bed   总被引:9,自引:0,他引:9  
This paper presents one of the first dedicated studies on mobile bed hydraulics of dam-break flow and the induced sediment transport and morphological evolution. A theoretical model is built upon the conservative laws of shallow water hydrodynamics, and a high-resolution numerical solution of the hyperbolic system is achieved using the total-variation-diminishing version of the second-order weighted average flux method in conjunction with the HLLC approximate Riemann solver and SUPERBEE limiter. It is found that a heavily concentrated and eroding wavefront first develops and then depresses gradually as it propagates downstream. In the early stage of the dam-break, a hydraulic jump is formed around the dam site due to rapid bed erosion, which attenuates progressively as it propagates upstream and eventually disappears. While the backward wave appears to migrate at the same speed as over a fixed bed, the propagation of the forward wavefront shows a complex picture compared to its fixed-bed counterpart as a result of the domination of rapid bed erosion initially, the density difference between the wavefront and the downstream ambient water in the intermediate period, and the pattern of the deformed bed profile in the long term. It is also found that the free surface profiles and hydrographs are greatly modified by bed mobility, which has considerable implications for flood prediction. The computed wave structure in the intermediate period exhibits great resemblance to available experiments qualitatively, and yet the existence of a shear wave is found in lieu of a secondary rarefaction postulated in an existing analysis. Finally, the use of the complete, rather than simplified, conservation equations is shown to be essential for correct resolution of the wave and bed structures, which suggests that previous models need reformulating.  相似文献   

18.
Flood Simulation Using a Well-Balanced Shallow Flow Model   总被引:4,自引:0,他引:4  
This work extends and improves a one-dimensional shallow flow model to two-dimensional (2D) for real-world flood simulations. The model solves a prebalanced formulation of the fully 2D shallow water equations, including friction source terms using a finite volume Godunov-type numerical scheme. A reconstruction method ensuring nonnegative depth is used along with a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored for calculation of interface fluxes. A local bed modification method is proposed to maintain the well-balanced property of the algorithm for simulations involving wetting and drying. Second-order accurate scheme is achieved by using the slope limited linear reconstruction together with a Runge-Kutta time integration method. The model is applicable to calculate different types of flood wave ranging from slow-varying inundations to extreme and violent floods, propagating over complex domains including natural terrains and dense urban areas. After validating against an analytical case of flow sloshing in a domain with a parabolic bed profile, the model is applied to simulate an inundation event in a 36?km2 floodplain in Thamesmead near London. The numerical predictions are compared with analytical solutions and alternative numerical results.  相似文献   

19.
A numerical model based upon a second-order upwind finite volume method on unstructured triangular grids is developed for solving shallow water equations. The HLL approximate Riemann solver is used for the computation of inviscid flux functions, which makes it possible to handle discontinuous solutions. A multidimensional slope-limiting technique is employed to achieve second-order spatial accuracy and to prevent spurious oscillations. To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary, the friction source terms are treated in a fully implicit way. A third-order total variation diminishing Runge–Kutta method is used for the time integration of semidiscrete equations. The developed numerical model has been applied to several test cases as well as to real flows. Numerical tests prove the robustness and accuracy of the model.  相似文献   

20.
Godunov-Type Solutions for Water Hammer Flows   总被引:1,自引:0,他引:1  
First- and second-order explicit finite volume (FV) Godunov-type schemes for water hammer problems are formulated, applied, and analyzed. The FV formulation ensures that both schemes conserve mass and momentum and produce physically realizable shock fronts. The exact solution of the Riemann problem provides the fluxes at the cell interfaces. It is through the exact Riemann solution that the physics of water hammer waves is incorporated into the proposed schemes. The implementation of boundary conditions, such as valves, pipe junctions, and reservoirs, within the Godunov approach is similar to that of the method of characteristics (MOC) approach. The schemes are applied to a system consisting of a reservoir, a pipe, and a valve and to a system consisting of a reservoir, two pipes in series, and a valve. The computations are carried out for various Courant numbers and the energy norm is used to evaluate the numerical accuracy of the schemes. Numerical tests and theoretical analysis show that the first-order Godunov scheme is identical to the MOC scheme with space-line interpolation. It is also found that, for a given level of accuracy and using the same computer, the second-order scheme requires much less memory storage and execution time than either the first-order scheme or the MOC scheme with space-line interpolation. Overall, the second-order Godunov scheme is simple to implement, accurate, efficient, conservative, and stable for Courant number less than or equal to one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号