首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A finite-element model was developed using ABAQUS software package to investigate the effect of placing geosynthetic reinforcement within the base course layer on the response of a flexible pavement structure. A critical state two-surface constitutive model was first modified to represent the behavior of base course materials under the unsaturated field conditions. The modified model was then implemented into ABAQUS through a user defined subroutine, UMAT. The implemented model was validated using the results of laboratory triaxial tests. Finite-element analyses were then conducted on different unreinforced and geosynthetic reinforced flexible pavement sections. The results of this study demonstrated the ability of the modified critical state two-surface constitutive model to predict, with good accuracy, the response of the considered base course material at its optimum field conditions when subjected to cyclic as well as static loads. The results of the finite-element analyses showed that the geosynthetic reinforcement reduced the lateral strains within the base course and subgrade layers. Furthermore, the inclusion of the geosynthetic layer resulted in a significant reduction in the vertical and shear strains at the top of the subgrade layer. The improvement of the geosynthetic layer was found to be more pronounced in the development of the plastic strains rather than the resilient strains. The reinforcement benefits were enhanced as its elastic modulus increased.  相似文献   

2.
The paper describes a new working stress design methodology introduced by the writers for geosynthetic reinforced soil walls (K-Stiffness Method) that is now extended to steel reinforced soil walls. A large database of full-scale steel reinforced soil walls (a total of 20 fully instrumented wall sections) was used to develop the new design methodology. The effects of global wall stiffness, soil strength, reinforcement layer spacing, and wall height were investigated. Results of simple statistical analyses using the ratio of measured to predicted peak reinforcement loads (i.e., method bias) demonstrate the improved prediction accuracy. The AASHTO Simplified Method results in an average method bias of 1.1 with a coefficient of variation (COV) of 45%, whereas the proposed K-Stiffness Method results in an average bias of 0.95 and a COV of 32%. Soil strength was found to have limited influence on reinforcement loads for steel reinforced soil walls, especially for high shear strength soils, while global wall stiffness and wall height had a major influence on reinforcement loads.  相似文献   

3.
Centrifuge tests were used to study the dynamic behavior of soil slopes reinforced with geosynthetics and metal grids. The main objectives were to determine the failure mechanism and amount of deformations under seismic loading and to identify the main parameters controlling seismically induced deformations. Geosynthetically reinforced soil slopes (2V:1H) and vertical walls reinforced with metallic mesh strips were subjected to earthquake motions with maximum foundation accelerations of up to 1.08g. The experimental results show that slope movement can occur under relatively small base accelerations, and significant lateral and vertical deformations can occur within the reinforced soil mass under strong shaking. However, no distinct failure surfaces were observed, and the magnitude of deformations is related to the backfill density, reinforcement stiffness and spacing, and slope inclination.  相似文献   

4.
Displacements of Reinforced Slopes Subjected to Seismic Loads   总被引:2,自引:0,他引:2  
Traditional analyses of stability of slopes subjected to seismic loads entail global equilibrium considerations with seismic influence included as a quasi-static force. Such an analysis does not reflect the earthquake shaking process, and it does not provide any information about permanent displacements that may have occurred as a result of that process. Earthquake events in recent years have brought about renewed interest in analyses of slopes subjected to seismic loads. This paper focuses on displacement calculations of reinforced slopes. Design of reinforced slopes using the quasi-static approach may lead to an unrealistically long reinforcement for large ground accelerations. If slopes are allowed to move by even a small displacement, then the reinforcement length can be reduced significantly. Two mechanisms of failure of reinforced slopes subjected to seismic conditions are considered: (1) Rotational collapse; and (2) sliding directly over the bottom layer of reinforcement. Yield accelerations and integrals of seismic records are presented in charts for easy use in practical applications. An example is shown to illustrate the method.  相似文献   

5.
A rational analysis of extensible sheet reinforcement subjected to an oblique end force has been presented that properly accounts for complex soil-reinforcement interaction and involves stress-deformation relationship implicitly. The results can be used for internal design of geosynthetic reinforced soil walls against pullout failure and tension failure. The pullout force and the end displacement at pullout for an extensible reinforcement are found to be almost the same as those for an inextensible reinforcement if the ratio of the reinforcement stiffness to the axial pullout capacity J* is greater than 15. With decrease in J* below 15, the maximum strain increases, the pullout failure becomes irrelevant, the tension failure dominates and the maximum allowable oblique force decreases. A minimum stiffness of about 25 times the axial pullout capacity is required to avoid the tension failure before the pullout provided the failure strain is 0.1. The predicted results have been calibrated against the finite-element analysis of pullout tests and detailed back analyses of published test data on model reinforced walls constructed with a wide range of extensible materials. The present analysis gives better predictions of the critical height against the pullout and the tension failure in model reinforced soil walls constructed with extensible reinforcements as compared to that of Rankine’s method.  相似文献   

6.
This paper pertains to the development of a mechanical model to predict the behavior of a geosynthetic-reinforced granular fill over soft soil improved with stone columns. The saturated soft soil has been idealized by Kelvin–Voight model to represent its consolidation behavior. The stone columns are idealized by stiffer springs. Pasternak shear layer and rough elastic membrane represent the granular fill and geosynthetic reinforcement layer, respectively. The nonlinear behavior of the granular fill and the soft soil is considered. Effect of consolidation of the soft soil due to inclusion of the stone columns has also been included in the model. Plane strain conditions are considered for the loading and reinforced foundation soil system. An iterative finite difference scheme is applied for obtaining the solution, and results are presented in nondimensional form. Comparison between the results from the present study and the analytical solution using theory of elasticity shows reasonable agreement. The advantage of using geosynthetic reinforcement is highlighted. Results indicate that inclusion of the geosynthetic layer effectively reduces the settlement. Nonlinearity in the behavior of the soft soil and the granular fill is reduced due to the use of geosynthetic reinforcement layer.  相似文献   

7.
In this paper, an analytical study considering the effect of uncertainties in the seismic analysis of geosynthetic-reinforced soil (GRS) walls is presented. Using limit equilibrium method and assuming sliding wedge failure mechanism, analysis is conducted to evaluate the external stability of GRS walls when subjected to earthquake loads. Target reliability based approach is used to estimate the probability of failure in three modes of failure, viz., sliding, bearing, and eccentricity failure. The properties of reinforced backfill, retained backfill, foundation soil, and geosynthetic reinforcement are treated as random variables. In addition, the uncertainties associated with horizontal seismic acceleration and surcharge load acting on the wall are considered. The optimum length of reinforcement needed to maintain the stability against three modes of failure by targeting various component and system reliability indices is obtained. Studies have also been made to study the influence of various parameters on the seismic stability in three failure modes. The results are compared with those given by first-order second moment method and Monte Carlo simulation methods. In the illustrative example, external stability of the two walls, Gould and Valencia walls, subjected to Northridge earthquake is reexamined.  相似文献   

8.
The results of 167 full-scale field load tests were used to examine several issues related to the load-displacement behavior of footings in cohesionless soils under axial compression loading, including (1) method to interpret the “failure load” from the load-settlement curves; (2) correlations among interpreted loads and settlements; and (3) generalized load-settlement behavior. The L1-L2 method was found to be more appropriate than the “tangent intersection” and “10% of the footing width” methods for interpreting the failure load. The interpreted loads and displacements indicate that footing load-settlement behavior is less elastic and more nonlinear than that of drilled foundations. The results show that the footing behavior will be beyond the elastic limit for designs where a traditional factor of safety between 2 and 3 is used. A normalized curve was developed by approximating the load-settlement curve for each load test in the database by hyperbolic fitting, and the uncertainty in this curve was quantified. This normalized curve can be used in footing design that considers capacity and settlement together. Where possible or warranted, the normalized curve can be subdivided as a function of initial soil modulus.  相似文献   

9.
A numerical finite-difference method (FLAC) model was used to investigate the influence of constitutive soil model on predicted response of two full-scale reinforced soil walls during construction and surcharge loading. One wall was reinforced with a relatively extensible polymeric geogrid and the other with a relatively stiff welded wire mesh. The backfill sand was modeled using three different constitutive soil models varying as follows with respect to increasing complexity: linear elastic-plastic Mohr-Coulomb, modified Duncan-Chang hyperbolic model, and Lade’s single hardening model. Calculated results were compared against toe footing loads, foundation pressures, facing displacements, connection loads, and reinforcement strains. In general, predictions were within measurement accuracy for the end-of-construction and surcharge load levels corresponding to working stress conditions. However, the modified Duncan-Chang model which explicitly considers plane strain boundary conditions is a good compromise between prediction accuracy and availability of parameters from conventional triaxial compression testing. The results of this investigation give confidence that numerical FLAC models using this simple soil constitutive model are adequate to predict the performance of reinforced soil walls under typical operational conditions provided that the soil reinforcement, interfaces, boundaries, construction sequence, and soil compaction are modeled correctly. Further improvement of predictions using more sophisticated soil models is not guaranteed.  相似文献   

10.
A theoretically based design method for the thickness of the base course of unpaved roads is developed in this paper, which considers distribution of stress, strength of base course material, interlock between geosynthetic and base course material, and geosynthetic stiffness in addition to the conditions considered in earlier methods: traffic volume, wheel loads, tire pressure, subgrade strength, rut depth, and influence of the presence of a reinforcing geosynthetic (geotextile or geogrid) on the failure mode of the unpaved road or area. In this method, the required base course thickness for a reinforced unpaved road is calculated using a unique equation, whereas more than one equation was needed with earlier methods. This design method was developed for geogrid-reinforced unpaved roads. However, it can be used for geotextile-reinforced unpaved roads and for unreinforced roads with appropriate values of relevant parameters. The calibration of this design method using data from field wheel load tests and laboratory cyclic plate loading tests on unreinforced and reinforced base courses is presented in the companion paper by the authors.  相似文献   

11.
The reinforcement of soft soils by rigid inclusions is a practical and economical technique for wide-span buildings and the foundations of embankments. This method consists of placing a granular layer at the top of the network of piles to reduce vertical load on the supporting soil and vertical settlement of the upper structure. The study focuses on the modeling of load-transfer mechanisms occurring in the reinforced structure located over the network of piles with a coupling between the finite-element method (geosynthetic sheets) and discrete element method (granular layer; concrete slab in some cases). The importance of granular layer thickness to increase load-transfer intensity and to reduce vertical settlement was observed. However, without a basal geosynthetic sheet, the compressibility of soft soil has a great influence on the mechanisms. A method predicting the intensity of load transfers was proposed, based on Carlsson’s solution. The main parameters concerned are the geometry of the work and the peak and residual friction angles of the granular layer.  相似文献   

12.
Performance of Geosynthetic-Reinforced Asphalt Pavements   总被引:1,自引:0,他引:1  
This paper describes the performance of geosynthetic-reinforced asphalt pavement under monotonic, cyclic, and dynamic loading conditions. The study differed from current practice where geosynthetics are typically used as separators or to improve the bearing capacity of the subgrade. A geogrid layer was installed at the bottom of the asphalt concrete layer, along the asphalt-subgrade interface, to function as tensile reinforcement. The load was applied to the surface of the asphalt concrete layer using a rigid rectangular footing under plane strain conditions. The strains that developed along the geogrid over time and at different load levels were monitored. Two different types of geogrid reinforcements were used, and their restraining effects on the layered system were compared. The study showed that geosynthetic reinforcement increased the stiffness and bearing capacity of the asphalt concrete pavement. Under dynamic loading, the life of the asphalt concrete layer was prolonged in the presence of geosynthetic reinforcement. The stiffness of the geogrid and its interlocking with the asphalt concrete contributed to the restraining effect.  相似文献   

13.
Limit Loads on Reinforced Foundation Soils   总被引:5,自引:0,他引:5  
Reinforced soil is a practical solution to construction of unpaved roads or placement of footings over weak soils. A stability analysis of reinforced foundation soil is presented in this paper. A method is suggested for calculating limit loads on strip footings over foundation soils reinforced with horizontal layers of geosynthetics. Separate solutions are given for a case where reinforcement layers slip within the soil, and for a case where reinforcement ruptures. In the former case, an increase in the bearing capacity is dependent on the characteristics of the soil-reinforcement interface, whereas in the latter case it depends on the strength of the reinforcement. In both cases the increase in the limit load is dependent on the internal friction angle of the soil. Expressions are developed for quantitative predictions of bearing capacity of the foundation soil with horizontal layers of reinforcement. An optimum reinforcement depth is also given.  相似文献   

14.
An experimental investigation of the dynamic internal shear behavior of a hydrated needle-punched geosynthetic clay liner is presented. Monotonic and cyclic displacement-controlled shear tests were conducted at a single normal stress to investigate the effects of displacement rate, displacement amplitude, number of cycles, frequency, and motion waveform on material response. Monotonic shear tests indicate that peak shear strength first increased and then decreased with increasing displacement rate. Cyclic shear tests indicate that cyclic response was primarily controlled by displacement amplitude. Excitation frequency and waveform had little effect on cyclic shear behavior or postcyclic static shear strength. Number of cycles ( ≥ 10) also had little effect on postcyclic static shear strength. Shear stress versus shear displacement diagrams displayed hysteresis loops that are broadly similar to those for natural soils with some important differences due to the presence of needle-punched reinforcement. Secant shear stiffness displayed strong reduction with increasing displacement amplitude and degradation with continued cycling. Values of damping ratio were significantly higher than those typical of natural clays at lower shear strain levels. Finally, cyclic tests with increasing displacement amplitude yielded progressively lower postcyclic static peak strengths due to greater levels of reinforcement damage. Postcyclic static residual strengths were unaffected by prior cyclic loading.  相似文献   

15.
This paper presents the results of four full-scale impact tests against barriers placed on top of an instrumented mechanically stabilized earth (MSE) wall. The impact was created by a head-on collision of a 2,268-kg bogie going at about 32.2 km/h. The barriers were New Jersey and vertical wall barriers with a 1.37-m-wide moment slab in 9.14-m-long sections. The wall was 1.52 m high with one panel and two layers of reinforcement. The reinforcement was 2.44-m-long strips, 4.88-m-long strips, and 2.44-m-long bar mats. The backfill was crushed rock. The instrumentation consisted of accelerometers, strain gauges, contact switch, displacement targets, string lines, and high-speed cameras. The test was designed to represent a commonly used installation in current practice including an impact load on the barrier at least equal to 240 kN. Most of the barriers sustained significant damage but overall the behavior of the wall was satisfactory since the displacements of the panels were minimal (less than 25 mm) and the panel damage was acceptable except possibly in the case of the 4.88-m-long strips. The loads measured in the reinforcement indicate that the reinforcement was brought to its ultimate capacity for the duration of the impact but since the impact duration was so short and since the displacements of the panels were within tolerable limits of 25 mm, this is considered acceptable. The use of the longer strips (4.88-m-long strips) leads to slightly smaller panel displacements and higher panel stresses as evidenced by a bending crack in the panel. The 2.44-m-long strips permitted more displacement of the wall panels, but the magnitude of the displacement was considered to be tolerable. The measured maximum dynamic loads in the strips were found to be 3–5 times higher than the calculated maximum static loads by AASHTO guidelines.  相似文献   

16.
Finite Element Studies of Asphalt Concrete Pavement Reinforced with Geogrid   总被引:1,自引:0,他引:1  
Many geotechnical applications are becoming more sophisticated and solutions derived from simplistic procedure are no longer reasonable or solutions do not exist. This paper describes two-dimensional finite element studies that analyzed the behavior of reinforced asphalt pavement under plane strain conditions and subject to monotonic loading. The asphalt material and soils were expressed using triangular elements of elastoplastic behavior that obeys Mohr–Coulomb criteria with associated and nonassociated flow rules. The geogrid was modeled using a one-dimensional linear elastic bar element. The finite element procedure was validated by comparing the results of analysis with the results obtained from a series of model tests. The load–settlement relationships, settlement profile, and strains in the geogrid were compared. The failure load obtained by assuming subgrade foundation with nonassociated flow rule was smaller than that of associated flow rule. There was only minor difference between the results obtained from the associated and nonassociated plastic models. The finite element procedure was capable of determining most measured quantities satisfactorily except the tensile strain in the geogrid, which was assumed linear elastic. The effects of the stiffness of geogrid reinforcement, thickness of asphalt layer, and strength of subgrade foundation were also investigated. The finite element procedure is a versatile tool for enhanced design of reinforced pavement systems.  相似文献   

17.
It is more rational to analyze permanent geosynthetic reinforced soil (GRS) walls against seismic loading based on their behavior during service life, but it has seldom been attempted. Calibrated finite-element procedure was used to investigate the reinforcement loads of GRS walls subject to seismic loading during service life, the results of which were compared to those predicted by Federal Highway Administration (FHwA) guideline. Parametric studies were carried out to investigate the effects of various wall parameters and characteristics of earthquake excitations. It is found that due to the isotach behavior of geosynthetics, the reinforcement loads during earthquake that occurs 10 years after construction were similar to those if the earthquake occurs at the end of construction. The FHwA method predicted roughly the maximum reinforcement load but it could not consider strain softening of soil and characteristics of earthquakes. The horizontal locations of maximum reinforcement load in lower reinforcement layers were farther away from the facing units than Rankine’s surface, which is believed to come from the potential compound failure.  相似文献   

18.
Fiber reinforced polymer (FRP) materials are currently produced in different configurations and are widely used for the strengthening and retrofitting of concrete structures and bridges. Recently, considerable research has been directed to characterize the use of FRP bars and strips as near surface mounted reinforcement, primarily for strengthening applications. Nevertheless, in-depth understanding of the bond mechanism is still a challenging issue. This paper presents both experimental and analytical investigations undertaken to evaluate bond characteristics of near surface mounted carbon FRP (CFRP) strips. A total of nine concrete beams, strengthened with near surface mounted CFRP strips were constructed and tested under monotonic static loading. Different embedment lengths were used to evaluate the development length needed for effective use of near surface mounted CFRP strips. A closed-form analytical solution is proposed to predict the interfacial shear stresses. The model is validated by comparing the predicted values with test results as well as nonlinear finite element modeling. A quantitative criterion governing the debonding failure of near surface mounted CFRP strips is established. The influence of various parameters including internal steel reinforcement ratio, concrete compressive strength, and groove width is discussed.  相似文献   

19.
This research studies the interaction of concrete, steel stirrups, and external fiber reinforced polymer (FRP) sheets in carrying shear loads in reinforced concrete beams. A total of eight tests were conducted on four laboratory-controlled concrete T-beams. The beams were subjected to a four-point loading. Each end of each beam was tested separately. Three types of FRP, uniaxial glass fiber, uniaxial carbon fiber, and triaxial glass fiber, were applied externally to strengthen the web of the T-beams, while some ends were left without FRP. The test results show that FRP reinforcement increases the maximum shear strengths between 15.4 and 42.2% over beams with no FRP. The magnitude of the increased shear capacity is dependent not only on the type of FRP but also on the amount of internal shear reinforcement. The triaxial glass fiber reinforced beam exhibited more ductile failure than the other FRP reinforced beams. This paper also presents a test model that is based on a rational mechanism and can predict the experimental results with excellent accuracy.  相似文献   

20.
Case History of Geosynthetic Reinforced Segmental Retaining Wall Failure   总被引:1,自引:0,他引:1  
A geosynthetic reinforced segmental retaining wall was collapsed during a monsoon season in Korea, three months after the completion of wall construction. The circular type global slope failure was the dominant failure mode. The as-built design was examined for its appropriateness in meeting the current design requirements and the global slope stability. A comprehensive stress-pore pressure-coupled finite-element analysis was additionally conducted with due consideration of both positive and negative pore pressures in saturated and unsaturated zones. A number of relevant tests were also carried out on the backfill and the reinforcement collected from the site. The investigation revealed among other things that the inappropriate design and the low-quality backfill were mainly responsible for the wall failure, although the primary triggering factor was the rainfall infiltration. The results of the stress-pore pressure-coupled finite-element analysis provided sound evidences as to the wall performance over the rainfall period, supporting the field observation. Practical implications of the findings from this study are also discussed in view of reinforced wall design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号