首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The permeable friction course (PFC) is a layer of porous asphalt pavement overlain on conventional impervious hot-mix asphalt or portland cement concrete. The drainage properties of PFC are typically considered to be governed primarily by two hydraulic properties: hydraulic conductivity and porosity. Both of these hydraulic properties change over the life cycle of the PFC layer due to clogging of the pore space by sediment. Therefore, determination of the hydraulic conductivity and porosity of PFC can be problematic. Laboratory and particularly field tests are necessary for accurately determining the hydraulic conductivity of the PFC layer. Taking multiple measurements over the life of the pavement shows how these hydraulic characteristics change with time and the varying roadway conditions at which they are evaluated. Constant head laboratory testing has shown that PFC experiences a nonlinear flow relationship as described by the Forchheimer equation. In addition to the laboratory analysis of the hydraulic characteristics, a falling head field test is recommended to determine the in situ hydraulic conductivity. This incorporates the modeling techniques used in the laboratory testing and applies them to the falling head conditions used in the field. The result is a nondestructive test procedure for determining the in situ hydraulic conductivity which is necessary for estimating the extent to which the benefits associated with the drainage characteristics of the PFC layer will persist.  相似文献   

2.
Foundry Green Sands as Hydraulic Barriers: Laboratory Study   总被引:2,自引:0,他引:2  
A laboratory testing program was conducted to assess the use of foundry sands from gray iron foundries, typically called green sands, as hydraulic barrier materials. Foundry green sands are mixtures of fine uniform sand, bentonite, and other additives. Specimens of foundry sand were compacted in the laboratory at a variety of water contents and compactive efforts and then permeated in rigid-wall and flexible-wall permeameters to define relationships between hydraulic conductivity, compaction water content, and dry unit weight. Additional tests were conducted to assess how hydraulic conductivity of compacted foundry sand is affected by environmental stresses such as desiccation, freeze-thaw, and chemical permeation. Results of the tests show that the hydraulic conductivity of foundry sand is sensitive to the same variables that affect hydraulic conductivity of compacted clays (i.e., compaction water content, and compactive effort). However, hydraulic conductivities <10?7 cm∕s can be obtained for many foundry sands using a broad range of water contents and compactive efforts, including water contents dry of optimum and at lower compactive effort. The hydraulic conductivity of foundry sand was generally unaffected by freeze-thaw, desiccation, or permeation with 0.1 N salt solution or municipal solid waste leachate, but was incompatible with acetic acid (pH = 3.5). Hydraulic conductivity of foundry sands correlates well with bentonite content and liquid limit, with hydraulic conductivity less than 10?7 cm∕s being achieved for bentonite content ≥6% and∕or liquid limit >20.  相似文献   

3.
A field study was conducted to determine if the field hydraulic conductivity of barrier layers constructed with foundry green sand is comparable to the hydraulic conductivity measured in the laboratory on laboratory-compacted specimens normally used for testing during design. Three test pads were constructed with foundry green sand. Their field hydraulic conductivity was measured using sealed double ring infiltrometers, two-stage borehole permeameters, and on large block specimens. Additional field hydraulic conductivity tests were conducted on the test pads after exposure to winter weather causing freeze-thaw cycling and summer weather causing desiccation. The field hydraulic conductivity data followed the same trends with bentonite content and liquid limit observed in the laboratory. When the bentonite content is greater than 6% (by weight), the plasticity index is greater than 3, or the liquid limit is greater than 20, the hydraulic conductivity is less than 10?7?cm/s. Testing after winter exposure showed that the field hydraulic conductivity was unaffected by winter weather, even though the test pads underwent up to six freeze-thaw cycles (depending on depth). Similarly, exposing the test pads to summer weather had no measurable effect on the field hydraulic conductivity. The field study validated that foundry sand is a useful industrial by-product that can be beneficially used as a hydraulic barrier material.  相似文献   

4.
Fiber Reinforcement for Waste Containment Soil Liners   总被引:1,自引:0,他引:1  
The hydraulic properties of compacted clay liners can be adversely affected by desiccation cracking. Previous studies evaluated the use of soil additives (such as lime, cement, and sand) for crack reduction. Initial results indicated that soil shrinkage was reduced. However, in many cases, the additives resulted in an increased hydraulic conductivity and decrease in soil plasticity. As a result, there is an increasing interest in the use of fiber reinforcement, which has shown successful results in concrete and other material applications. The present investigation focused on the impact of fiber reinforcement on the development of desiccation cracks in compacted clay samples, as well as the impact of the fiber additives on soil workability, compaction characteristics and hydraulic conductivity. The results of this study indicate that, for the soils of this investigation, the optimum fiber content necessary to achieve maximum crack reduction and maximum dry density, while maintaining acceptable hydraulic conductivity, is between 0.4 and 0.5%. The observed crack reduction for this range of fiber content was approximately 50%, as compared to the unamended soil sample. The maximum observed crack reduction was approximately 90%, for a fiber content of 0.8%. Although the crack reduction could be increased further by increasing the fiber content, the sample hydraulic conductivity increased significantly and the practical limits of mixture workability were exceeded.  相似文献   

5.
Effect of Fly Ash on Engineering Properties of Expansive Soils   总被引:8,自引:0,他引:8  
This note presents a study of the efficacy of fly ash as an additive in improving the engineering characteristics of expansive soils. An experimental program has evaluated the effect of the fly ash content on the free swell index, swell potential, swelling pressure, plasticity, compaction, strength, and hydraulic conductivity characteristics of expansive soil. The plasticity, hydraulic conductivity and swelling properties of the blends decreased and the dry unit weight and strength increased with an increase in fly ash content. The resistance to penetration of the blends increased significantly with an increase in fly ash content for a given water content. Excellent correlation was obtained between the measured and predicted undrained shear strengths.  相似文献   

6.
Asphalt concrete is used as a water barrier (interior core or upstream facing) in embankment dams. This paper investigates the behavior of hydraulic asphalt specimens subjected to cyclic loading in a triaxial cell. The specimens were tested at various sustained static stress states and temperatures and at maximum cyclic shear stress levels corresponding to severe earthquake shaking of the dam. The cyclic modulus versus mean sustained static stress showed an approximately linear relationship in a logarithmic diagram, and an empirical expression was developed to determine the cyclic modulus. At a mean sustained stress of 1.0?MPa, the cyclic modulus at 20°C was about 900?MPa; at 9°C, it was 1900?MPa and at 3.5°C, about 2500?MPa. The damping ratio was found to be between 0.07–0.30, depending on stress state and temperature level. The number of load cycles (up to 6000) had no significant effect on the magnitude of cyclic strain, and the cyclic loading was documented to have little effect on the postcyclic monotonic stress-strain-strength behavior and permeability (watertightness) of the asphalt concrete.  相似文献   

7.
In its natural state, loess can be considered as an unstable soil, which develops large deformations when moistened. In Argentina, loess is used in most Geotechnical constructions, including embankments and liners. The interest of this work to evaluate the potential application of electrical conductivity measurements for monitoring the effects introduced by remolding and compaction in the soil. Samples of loess were compacted at varied densities and mixed with electrolytes of different concentrations. Electrical conductivity was measured with a two electrode cell. The effects introduced on the measured conductivity by frequency, degree of saturation, soil density, temperature, and electrolyte type and concentration are addressed. Additionally, hydraulic permeability tests were performed on compacted specimens of loess and the relationship between electrical and hydraulic conductivity was determined. It is concluded here that the ohmic conductivity of compacted specimens depends mainly on the salt concentration in the pore fluid, and volumetric water content. The effect of compaction density was observed to be less significant. The whole behavior of electric conductivity of loess is well described by the Archie’s law.  相似文献   

8.
Field Performance of a Compacted Clay Landfill Final Cover at a Humid Site   总被引:1,自引:0,他引:1  
A study was conducted in southern Georgia, USA, to evaluate how the hydraulic properties of the compacted clay barrier layer in a final landfill cover changed over a 4-year service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed continuous monitoring of the water balance. Patterns in the drainage (i.e., flow from the bottom of the cover) record suggest that preferential flow paths developed in the clay barrier soon after construction, apparently in response to desiccation cracking. After four years, the clay barrier was excavated and examined for changes in soil structure and hydraulic conductivity. Tests were conducted in situ with a sealed double-ring infiltrometer and two-stage borehole permeameters and in the laboratory on hand-carved blocks taken during construction and after four years of service. The in situ and laboratory tests indicated that the hydraulic conductivity increased approximately three orders of magnitude (from ≈ 10?7?to? ≈ 10?4?cm?s?1) during the service life. A dye tracer test and soil structure analysis showed that extensive cracking and root development occurred throughout the entire depth of the barrier layer. Laboratory tests on undisturbed specimens of the clay barrier indicated that the hydraulic conductivity of damaged clay barriers can be underestimated significantly if small specimens (e.g., tube samples) are used for hydraulic conductivity assessment. The findings also indicate that clay barriers must be protected from desiccation and root intrusion if they are expected to function as intended, even at sites in warm, humid locations.  相似文献   

9.
Organoclays, clays modified by cationic surfactants, for engineering applications have recently drawn great attention because of their high organic removal capacity. In this study, the potential use of organoclays with soil-bentonite admixtures as waste containment barriers is investigated by experimental tests such as batch equilibrium sorption studies, compaction tests, and hydraulic conductivity tests. Sorption isotherms of total organic carbon (TOC), a gross organic term, by five different types of soil admixtures are nonlinear. The soil specimen with more organoclays exhibits higher organic sorption capacity and a larger retardation factor. The specimens with 20% by dry weight of bentonite have higher optimum water content and plasticity. With the addition of bentonite in the soil material consisting of completely decomposed volcanic rock (CDV) (natural soils) and organoclays, the hydraulic conductivity to leachate decreases from about 10?7 to 10?8 cm∕s. This indicates that the presence of bentonite in the admixtures is important in reducing hydraulic conductivity.  相似文献   

10.
Hydraulic Conductivity of MSW in Landfills   总被引:1,自引:0,他引:1  
This paper presents a laboratory investigation of hydraulic conductivity of municipal solid waste (MSW) in landfills and provides a comparative assessment of measured hydraulic conductivity values with those reported in the literature based on laboratory and field studies. A series of laboratory tests was conducted using shredded fresh and landfilled MSW from the Orchard Hills landfill (Illinois, United States) using two different small-scale and large-scale rigid-wall permeameters and a small-scale triaxial permeameter. Fresh waste was collected from the working phase, while the landfilled waste was exhumed from a borehole in a landfill cell subjected to leachate recirculation for approximately 1.5 years. The hydraulic conductivity tests conducted on fresh MSW using small-scale rigid-wall permeameter resulted in a range of hydraulic conductivity 2.8×10?3–11.8×10?3?cm/s with dry unit weight varied in a narrow range between 3.9–5.1?kN/m3. The landfilled MSW tested using the same permeameter produced results between 0.6×10?3–3.0×10?3?cm/s for 4.5–5.5?kN/m3 dry unit weights. The hydraulic conductivity obtained from large-scale rigid-wall permeameter tests decreased with the increase in normal stress for both fresh and landfilled waste. The hydraulic conductivity for fresh MSW ranged from 0.2 cm/s for 4.1?kN/m3 dry unit weight (under zero vertical stress) and then decreased to 4.9×10?5?cm/s for 13.3?kN/m3 dry unit weight (under the maximum applied normal stress of 276 kPa). The hydraulic conductivity of the landfilled MSW decreased from 0.2 cm/s to 7.8×10?5?cm/s when the dry unit weight increased from 3.2 to 9.6?kN/m3. The results clearly demonstrated that the hydraulic conductivity of MSW can be significantly influenced by vertical stress and it is mainly attributed to the increase in density leading to low void ratio. In small-scale triaxial permeameter, when the confining pressure was increased from 69 to 276 kPa the hydraulic conductivity decreased from approximately 10?4?to?10?6?cm/s, which is much lower than those determined from rigid-wall permeameter tests. The published field MSW hydraulic conductivities are found to be higher than the laboratory results. Landfilled MSW possesses lower hydraulic conductivity than fresh MSW due to increased finer particles resulting from degradation. The decreasing hydraulic conductivity with increasing dry unit weight is expressed by an exponential decay function.  相似文献   

11.
A study of the micromechanical damage behavior of asphalt concrete is presented. Asphalt concrete is composed of aggregates, mastic cement, and air voids, and its load carrying behavior is strongly related to the local microstructural load transfer between aggregate particles. Numerical simulation of this micromechanical behavior was accomplished by using a finite-element model that incorporated the mechanical load-carrying response between aggregates. The finite-element scheme used a network of special frame elements each with a stiffness matrix developed from an approximate elasticity solution of the stress and displacement field in a cementation layer between particle pairs. Continuum damage mechanics was then incorporated within this solution, leading to the construction of a microdamage model capable of predicting typical global inelastic behavior found in asphalt materials. Using image processing and aggregate fitting techniques, simulation models of indirect tension, and compression samples were generated from surface photographic data of actual laboratory specimens. Model simulation results of the overall sample behavior and evolving microfailure/fracture patterns compared favorably with experimental data collected on these samples.  相似文献   

12.
Needle-punched geosynthetic clay liner (GCL) specimens subjected to 0, 5, and 12 freeze–thaw cycles in the laboratory, and GCL specimens recovered from a composite barrier wall in the Canadian Arctic after 1 and 3 years were examined to assess the hydraulic conductivity/permeability with respect to both deionized deaired water and Jet A-l. The GCL specimens recovered from the field after 3 years had a hydraulic conductivity with respect to water that was approximately 30% less than that of the GCL specimens subjected to 12 initial freeze–thaw cycles in the laboratory, suggesting that the laboratory conditions are more severe than field conditions. The combined effects of both the freeze–thaw cycles and Jet A-l permeation increased the permeability. This increase is attributed to the creation of macropores in the GCL due to freezing and to an expansion of free-pore space due to contraction of the double layer caused by permeation of Jet A-l. Although there was an increase in permeability due to the combined effect of freeze–thaw and permeation by Jet A-l, the effect was relatively small and the results suggest that the GCL continued to exhibit good performance as a hydraulic barrier when subject to extreme climatic conditions and hydrocarbons both in the laboratory and in the field.  相似文献   

13.
The water balances and the long-term performance of different landfill cover systems have been measured in situ in large-scale lysimeters on the landfill Hamburg-Georgswerder, Germany since 1988. The cover systems including different barrier components for water transport were constructed with state-of-the-art technology and have been excavated at several occasions especially to inspect the structure of the barriers. For the first time, the irreversible impact of crack formation in cohesive soil barriers and geosynthetic clay barriers due to desiccation, shrinkage, ion exchange, and plant root penetration has been observed and quantified in this study. After four years of good performance, these covers began to leak between 90 and 200 mm/year (average precipitation of 860 mm/year). The hydraulic conductivity of the cohesive soil barriers increased from 2×10?10 to 9×10?8?m/s, the daily peaks of the leakage through the geosynthetic clay barriers from initial values around 2×10?11?to?2×10?7?m3/(m2?s). The composite barriers with geomembranes above cohesive soil barriers performed very well, showing no leakage and only very little thermally induced water transport. A capillary barrier also performed well (average annual leakage of 18 mm/year). The data of the past 10 years prove that evapotranspiration can be increased significantly by planting bushes, which also limits the potential leakage through barrier layers.  相似文献   

14.
Laboratory tests were conducted on three lateritic soil samples to illustrate some pertinent considerations in the design of compacted lateritic soil liners and covers. The three design parameters investigated are hydraulic conductivity, desiccation-induced volumetric shrinkage, and unconfined compressive strength. Test specimens were compacted at various molding water contents using four compactive efforts. The compaction conditions were shown to have some relationship with soil compaction using either the plasticity modulus or the plasticity product (i.e., clay index). For construction quality assurance purposes, the traditional approach was compared with the modern criterion. Deficiencies associated with the traditional approach for soil liners found in literature also apply to lateritic soils. Overall acceptable zones were constructed on the compaction plane to meet design objectives for hydraulic conductivity, volumetric shrinkage strains, and unconfined compressive strength. The line of optimums was identified as a suitable lower bound for overall acceptable zones of lateritic soils. The volumetric shrinkage strain was also identified as the second most important design parameter for lateritic soils. The shapes of the acceptable zones were affected by the fines contents of the soils.  相似文献   

15.
Flexible-wall permeability tests and rigid-wall consolidation/permeability tests were performed to evaluate the hydraulic conductivity and compressibility of a model soil-bentonite (SB) backfill amended with granular activated carbon (GAC) or powdered activated carbon (PAC). The tests were performed as part of an assessment of enhanced SB backfill with improved attenuation capacity for greater longevity of barrier containment performance. Backfill specimens containing fine sand, 5.8% sodium bentonite, and GAC or PAC (0, 2, 5, and 10% by dry weight) were prepared to target slumps of 125±12.5?mm. Hydraulic conductivity (k) and compressibility of backfill test specimens were measured in consolidometers as a function of effective stress, σ′ (24 ? σ′ ? 1,532?kPa), whereas flexible-wall k was measured for backfill specimens consolidated to σ′ = 34.5?kPa. The results indicate that addition of GAC has little impact on the hydraulic and consolidation properties of the backfill, whereas addition of PAC causes a decrease in k and consolidation coefficient (cv) and a slight increase in compression index (Cc). Differences in behavior between GAC-amended backfills and PAC-amended backfills are attributed primarily to differences in GAC and PAC particle size.  相似文献   

16.
Constant-head hydraulic conductivity tests are performed on layered heterogeneous porous media to evaluate the use of underdrains to calculate the hydraulic conductivity of an overlying, less permeable medium. The layered profiles consist of a barrier layer comprising sand mixed with 10% kaolin, overlying a foundation layer comprising sand mixed with only 5% kaolin. Underdrains are evaluated by replacing excavated portions of the foundation layer with only sand. The results indicate that preferential flow of water occurs around, rather than through, the sand underdrains resulting in an underestimate of the measured hydraulic conductivity of the barrier layer assuming 1D, saturated flow in accordance with standard practice. The observed preferential flow effect is consistent with previously published numerical simulations of unsaturated flow through similarly layered heterogeneous soil profiles that indicate lateral flow around underdrains due to the contrast in unsaturated properties of the soils. The results of this study have important ramifications with respect to the use of underdrains to measure in situ hydraulic conductivity of compacted clay liners for waste containment.  相似文献   

17.
To evaluate roller-integrated machine drive power (MDP) technology for predicting the compaction parameters of cohesive soils considering the influences of soil type, moisture content, and lift thickness on machine power response, a field study was conducted with 15-m test strips using three cohesive soils and several nominal moisture contents. Test strips were compacted using a prototype CP-533 static padfoot roller with integrated MDP technology and tested using various in situ compaction measurement devices. To characterize the roller machine-soil interaction, soil testing focused on measuring compaction parameters for the compaction layer. Variation in both MDP and in situ measurements was observed and attributed to inherent variability of the compaction layer and measurement errors. Considering the controlled operations to create relatively uniform conditions of the test strips, measurement variability observed in this study establishes a baseline for acceptable variation in production operations using MDP technology in cohesive soils. Predictions of in situ compaction measurements from MDP were found to be highly correlated when moisture content and MDP-moisture interaction terms were incorporated into regression models.  相似文献   

18.
Unit Weight of Municipal Solid Waste   总被引:3,自引:0,他引:3  
The unit weight of municipal solid waste (MSW) is an important parameter in engineering analyses of landfill performance, but significant uncertainty currently exists regarding its value. A careful review of reliable field data shows that individual landfills have a characteristic MSW unit weight profile. Based on in situ unit weight data and trends observed in large-scale laboratory tests, a hyperbolic relationship was developed to represent this characteristic MSW unit weight profile. Within the context of this characteristic profile, landfill-specific values of MSW unit weight depend primarily on waste composition, operational practices (i.e., compaction, cover soil placement, and liquids management), and confining stress. Guidance is provided for developing landfill-specific MSW unit weight profiles, including procedures for performing large-scale tests for in situ measurement of MSW unit weight at a landfill.  相似文献   

19.
This paper reports the in situ field saturated hydraulic conductivity of municipal solid waste at a landfill in Florida. The saturated hydraulic conductivity (Ks) was estimated at 23 locations using the borehole permeameter test, a method commonly used for determination of the Ks of unsaturated soil. The Ks of the landfilled waste was found to range from 5.4×10?6 to 6.1×10?5?cm/s. The Ks was found to be on the lower end of the range of Ks reported by previous studies. The hydraulic conductivity of the waste decreased with depth, the likely result of greater overburden pressures associated with deep locations of the landfill. Permeability values (kw) of the landfilled waste calculated based on Ks were compared with permeability values estimated using air as the fluid (air permeability, ka). Values of ka were found to be approximately three orders of magnitude greater than those of kw. The lower permeability of the waste to water was primarily attributed to entrapped gas. Other factors such as potential clogging of media and short-circuiting of air along the well may also have contributed to the differences in ka and kw.  相似文献   

20.
The soil–water characteristic curve (SWCC) of fine-grained soils is usually determined experimentally. In the design of mine waste covers and landfill liners, the unsaturated hydraulic conductivity function, k(h), is often derived theoretically from the measured SWCC. Implicit in these derivations is the transformation of the SWCC to a pore-size distribution (PSD), typically assumed to be constant and monomodal. However, PSD measurements of a clayey till compacted at various water contents after compaction, after flexible-wall permeability testing and before and after SWCC tests show that the PSD of the same material varies significantly under the stated physical conditions. Predictions of the SWCCs using PSDs measured both before and after the SWCC tests significantly underpredicted the values measured. By applying a simple transformation to the PSD to account for the scaling effect from the porosimetry samples (approximately 1 g dry weight) to the SWCC test samples (approximately 200 g dry weight), the predicted SWCCs were found to envelop the measured values. A simple model that simulates the change in PSD during the SWCC test predicted water contents close (1% root mean square error) to the measured SWCCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号