首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples of Baltic Sea water were processed by glass fiber filtration followed by crossflow filtration, resulting in a particulate and colloidal fraction. Crossflow filtration provided necessary filtration rates without contributing interfering contaminants. It is suggested that photo-oxidation, as employed herein, did not completely oxidize colloidal organic matter, thus underestimated its concentration. Percentages of organic carbon and aliphatic hydrocarbons in the colloidal size range were calculated, but should be viewed as semi-quantitative values due to observed inaccuracies introduced by the analytical procedures of filtration and organic carbon analyses.  相似文献   

2.
Biochemical oxygen demand (BOD) and biodegradable dissolved organic carbon (BDOC) measure the amount of biodegradable organics in water samples using mixed culture seeds. The BOD method relies on the dissolved oxygen reduction while the BDOC procedure, which is more novel, is based on the dissolved organic carbon decrease during the incubation. In this study, three commercial BOD seeds, namely BOD Seed, Bi-Chem and Polyseed, were tested as inocula for BDOC measurement. Standard solutions, secondary effluent and raw surface water samples were used. BDOC exertions provided by the commercial seeds were compared with those obtained from two existing BDOC inocula, indigenous and mixed liquor suspended solid (MLSS) seeds. The commercial and indigenous inocula provided similar exertion trends and BDOC results that were not significantly different for surface water samples while the results for secondary effluent samples were inconclusive. The MLSS inoculum tend to provide slightly higher BDOC values and faster exertion kinetics than the commercial and indigenous inocula. The exertions by all five inocula could be expressed well with first-order kinetics for all cases that enough data were available for kinetics evaluation. The commercial seeds were similar in terms of BDOC determination accuracy and precision, and exertion kinetics. It is possible to use the commercial BOD inocula as seeds for BDOC determination but the results might not be statistically the same as those of the indigenous inoculum for certain types of samples.  相似文献   

3.
从分子质量的变化分析臭氧活性炭工艺   总被引:7,自引:3,他引:7  
为了解臭氧活性炭工艺的机理并优化运行条件,采用臭氧活性炭处理黄浦江原水,分析了原水及经不同工艺单元处理后溶解性有机物 (DOM)分子质量 (MW)的变化。结果表明:黄浦江原水中的DOM主要为小分子有机物;臭氧对大分子有机物的氧化分解作用明显强于对小分子有机物的氧化作用;MW<1ku的有机物经臭氧氧化后则表现出不同程度的增加;混凝、沉淀、过滤对MW>3ku的大分子有机物去除效果较好,而对MW<3ku的小分子有机物去除效果较差;生物活性炭单元能有效去除MW为 3~1ku和MW<1ku的小分子有机物;臭氧氧化与活性炭吸附在去除不同MW有机物的过程中有很好的互补性,从而使该工艺能有效去除原水中的DOM。  相似文献   

4.
This study investigates biofiltration for the removal of dissolved organic carbon (DOC), pharmaceuticals and personal care products (PPCPs), and for the reduction of non-specific toxicity expressed as baseline toxicity equivalent concentration (baseline-TEQ). Two filtering media, sand and granular activated carbon, were tested. The influence of pre-ozonation and empty-bed contact time (EBCT, from 30 to 120 min) was determined. The experiments were performed at a pilot-scale with real WWTP effluent. A previous study showed that biological activity had developed on the filtering media and dissolved organic removal had reached a steady state before sampling commenced. The results show that biological activated carbon (BAC) has a good potential for the removal of DOC (35-60%), PPCPs (>90%) and baseline-TEQ (28-68%) even without pre-ozonation. On the contrary, the sand shows limited improvement of effluent quality. Varying the EBCT does not influence the performance of the BAC filters; however, dissolved oxygen concentration could be a limiting factor. The performances of the BAC filters were stable for over two years suggesting that the main mechanism of organic matter and PPCPs removal is biodegradation. It is concluded that BAC filtration without pre-ozonation could be implemented as a low cost advanced treatment option to improve WWTP effluent chemical quality.  相似文献   

5.
Grünheid S  Amy G  Jekel M 《Water research》2005,39(14):3219-3228
Bank filtration and artificial recharge provide an important drinking water source to the city of Berlin. Due to the practice of water recycling through a semi-closed urban water cycle, the introduction of effluent organic matter (EfOM) and persistent trace organic pollutants in the drinking water is of potential concern. In the work reported herein, the research objectives are to study the removal of bulk and trace organics at bank filtration and artificial recharge sites and to assess important factors of influence for the Berlin area. The monthly analytical program is comprised of dissolved organic carbon (DOC), UV absorbance (UVA254), liquid chromatography with organic carbon detection (LC-OCD), differentiated adsorbable organic halogens (AOX) and single organic compound analysis of a few model compounds. More than 1 year of monitoring was conducted on observation wells located along the flowpaths of the infiltrating water at two field sites that have different characteristics regarding redox conditions, travel time, and travel distance. Two transects are highlighted: one associated with a bank filtration site dominated by anoxic/anaerobic conditions with a travel time of up to 4-5 months, and another with an artificial recharge site dominated by aerobic conditions with a travel time of up to 50 days. It was found that redox conditions and travel time significantly influence the DOC degradation kinetics and the efficiency of AOX and trace compound removal.  相似文献   

6.
The effective removal of soluble natural organic matter (NOM) during water treatment can significantly decrease the ClO(2) demand of processed water. This can be achieved through the oxidation and/or the removal of NOM. The purpose of the study was to examine the influence of ClO(2) oxidation and subsequent GAC filtration on the final ClO(2) demand of treated water. The study showed the ClO(2) demand to be strongly correlated with the abundance of high molecular fractions of NOM in treated water. As it was shown, this part of NOM was effectively removed during the GAC filtration. Moreover, the pre-treatment of water with ClO(2) considerably increased the total capacity of GAC filters for organic and inorganic (i.e. chlorites) oxidation by-products. Therefore, the oxidation of NOM molecules in conjunction with a very efficient GAC filtration can be successfully employed to control the abundance of high molecular NOM components, and thus the ClO(2) demand of finished water.  相似文献   

7.
Lee CO  Howe KJ  Thomson BM 《Water research》2012,46(4):1005-1014
This pilot-scale research project investigated and compared the removal of pharmaceuticals and personal care products (PPCPs) and other micropollutants from treated wastewater by ozone/biofiltration and reverse osmosis (RO). The reduction in UV254 absorbance as a function of ozone dose correlated well with the reduction in nonbiodegradable dissolved organic carbon and simultaneous production of biodegradable dissolved organic carbon (BDOC). BDOC analyses demonstrated that ozone does not mineralize organics in treated wastewater and that biofiltration can remove the organic oxidation products of ozonation. Biofiltration is recommended for treatment of ozone contactor effluent to minimize the presence of unknown micropollutant oxidation products in the treated water. Ozone/biofiltration and RO were compared on the basis of micropollutant removal efficiency, energy consumption, and waste production. Ozone doses of 4-8 mg/L were nearly as effective as RO for removing micropollutants. When wider environmental impacts such as energy consumption, water recovery, and waste production are considered, ozone/biofiltration may be a more desirable process than RO for removing PPCPs and other trace organics from treated wastewater.  相似文献   

8.
A method for the measurement of biodegradable organic carbon in waters   总被引:1,自引:0,他引:1  
In the last few years several methods have been proposed for determining biodegradable dissolved organic carbon (BDOC) in waters. A modification of an original method for measuring BDOC is proposed. This method is suitable for discrete samples and for measuring the biodegradability of organic compounds dissolved in water. It consists of a dynamic procedure that measures the decrease in the dissolved organic carbon (DOC) in the sample of water. The sample is recirculated through a glass column containing a biofilm attached to a novel support medium. The method has been used to study waters at different steps in a water-treatment process and to measure the biodegradability of different dissolved organic substances in water.  相似文献   

9.
In order to estimate the adsorbability by activated carbon of organic compounds dissolved in aqueous solutions, the contribution of individual atoms to the adsorption process is calculated. The contribution of carbon, bromine and chlorine atoms is positive, that of oxygen atoms is negative, that of hydrogen atoms is very small and that of nitrogen atoms is influenced by the kind of functional group in which they are contained. The dominant factors governing adsorption are the numbers of carbon and oxygen atoms in a molecule. The activated carbon's effectiveness for adsorption of organic compounds dissolved in solutions can be predicted from such water quality indexes as total organic carbon, total organic nitrogen, total organic halogen an total oxygen demand.  相似文献   

10.
Sang J  Zhang X  Li L  Wang Z 《Water research》2003,37(19):4711-4718
The purpose of this study was to investigate the effect of phosphorus addition on biological pretreatment of raw water. Experiments were conducted in pilot-scale bio-ceramic filters with raw water from a reservoir located in Beijing, China. The results demonstrated that phosphorus was the limiting nutrient for bacterial growth in the raw water investigated in this study. The measured values of bacterial regrowth potential (BRP) and biodegradable dissolved organic carbon (BDOC) of the raw water increased by 50-65% and 30-40% with addition of 50 microg of PO4(3-)-PL(-1), respectively. Addition of 25 microg of PO4(3-)-PL(-1) to the influent of bio-ceramic filter enhanced the percent removal of organics by 4.6, 5.7 and 15 percentage points in terms of COD(Mn), TOC and BDOC, respectively. Biomass in terms of phospholipid content increased by 13-22% and oxygen uptake rate (OUR) increased by 35-45%. The ratio of C:P for bacteria growth was 100:1.6 for the raw water used in this study. Since change of phosphorus concentrations can influence the performance of biological pretreatment and the biological stability of drinking water, this study is of substantial significance for waterworks in China. The role of phosphorus in biological processes of drinking water should deserve more attention.  相似文献   

11.
基于北方某水厂中试基地,采用新炭、2.5~3.5年炭、4.5~5.5年炭等不同炭龄的活性炭滤柱,进行为期1年的连续运行,对比研究炭龄对南水北调水源水中有机物去除效果的影响。结果表明,长期运行稳定的活性炭滤柱,主要通过生物作用去除水中的有机物;2.5~3.5年和4.5~5.5年炭龄滤柱对有机物的去除效果差异较小,但二者对三氯甲烷的去除效果优于生物膜不稳定的新炭滤柱;通过高通量测序解析发现,鞘氨醇单胞菌、DSSF69等是优势功能菌,炭龄长的生物多样性更丰富,生物膜系统更稳定。此外,活性炭滤柱对有机物的去除效果与进水有机物的污染程度相关,当进水溶解性有机物浓度较低时,活性炭滤柱会出现吸附物质逆扩散的现象,所以当水质较好时,活性炭滤池的有机物去除效果会减弱。  相似文献   

12.
珠江水中有机物分子量分布及其去除研究   总被引:2,自引:0,他引:2  
采用超滤膜分级方法考察了常规混凝、高锰酸钾和粉末活性炭预处理等工艺对珠江水中各级分子量有机物的去除效果。结果表明,珠江水中有机物以分子量小于1kDa的小分子有机物为主,各级分子量有机物TOC和UV254具有良好的相关性。常规混凝工艺主要去除大分子有机物,且去除率随分子量的减小而降低。高锰酸钾预处理能够全面提高各级分子量有机物的去除效果;粉末活性炭主要吸附中小分子有机物,对各级分子量有机物的去除效果与常规混凝成互补。  相似文献   

13.
添加碱渣对污泥厌氧消化的影响研究   总被引:4,自引:1,他引:3  
将碱渣与城市污水处理厂的剩余污泥按不同的比例均匀混合后,进行厌氧消化试验,并根据消化液中SCOD、pH值及产气量等指标的变化,分析了碱渣对污泥厌氧消化性能的影响.结果表明:在碱渣添加量<8.25 g/L时,对污泥厌氧消化中的水解反应有较大的促进作用,溶出的有机物可生物降解性好;在试验的碱渣添加量范围内,厌氧消化液的pH值维持在7~8,显示碱渣对污泥消化产生的有机酸具有一定的缓冲作用;当碱渣添加量为3.30 g/L时,产气量和甲烷产量最大且厌氧消化反应速度最快,与未添加碱渣的相比则甲烷产量提高了约37.9%.碱渣中含有的碱性物质对污泥厌氧消化有较大的促进作用.  相似文献   

14.
The optimum conditions for the removal of dissolved organic impurities from water using hydrogen peroxide (50%) followed by ultraviolet irradiation were investigated. The photochemically initiated hydroxyl radical (OH) oxidation reduced the total organic carbon (TOC) content of distilled water samples by about 88% and of tap water by 98%. Extraction with hexane of equal volumes of water samples before and after H2O2/u.v. treatment followed by gas chromatographic analysis of the concentrated extracts indicated that about 12% of the electron-capturing, residual organics remained after this treatment. These results support the conclusion drawn from total organic carbon analysis that this simple method yields water nearly free of organic impurities.  相似文献   

15.
Leupin OX  Hug SJ 《Water research》2005,39(9):1729-1740
Removing arsenic from contaminated groundwater in Bangladesh is challenging due to high concentrations of As(III), phosphate and silicate. Application of zero-valent iron as a promising removal method was investigated in detail with synthetic groundwater containing 500 microg/L As(III), 2-3mg/L P, 20mg/L Si, 8.2mM HCO3-, 2.5mM Ca2+, 1.6mM Mg2+ and pH 7.0. In a series of experiments, 1L was repeatedly passed through a mixture of 1.5 g iron filings and 3-4 g quartz sand in a vertical glass column (10mm diameter), allowing the water to re-aerate between each filtration. At a flow rate of 1L/h, up to 8 mg/L dissolved Fe(II) was released. During the subsequent oxidation of Fe(II) by dissolved oxygen, As(III) was partially oxidized and As(V) sorbed on the forming hydrous ferric oxides (HFO). HFO was retained in the next filtration step and was removed by shaking of the sand-iron mixture with water. Rapid phosphate removal provided optimal conditions for the sorption of As(V). Four filtrations lead to almost complete As(III) oxidation and removal of As(tot) to below 50 microg/L. In a prototype treatment with a succession of four filters, each containing 1.5 g iron and 60 g sand, 36 L could be treated to below 50 microg/L in one continuous filtration, without an added oxidant.  相似文献   

16.
Johnson CJ  Singer PC 《Water research》2004,38(17):3738-3750
The objective of this research was to examine the impact of a magnetic ion exchange resin (MIEX) on ozone demand and bromate formation in two different ozonated waters at bench scale. The first raw water had a high bromide ion concentration, a high ozone demand, and was highly colored. Based on experimental findings from the first water, the second water was selected as a model water in which more controlled experiments were performed. The waters were treated with the MIEX resin using jar test procedures to find the optimal MIEX dosage based upon the removal of ultraviolet (UV)-absorbing substances, dissolved organic carbon (DOC), and bromide. The optimal resin dosage was chosen for bulk MIEX treatment and subsequent ozonation in a semi-batch reactor. The ozone demand and formation of bromate were analyzed as a function of ozone dosage and dissolved ozone concentration for the MIEX pre-treated water, and compared to the results obtained by ozonating the water without MIEX pre-treatment. The results indicate that pre-treatment of the water with the MIEX resin significantly reduces total organic carbon, DOC, UV absorbance, color, and to some extent, bromide. MIEX pre-treatment of the water prior to ozonation substantially lowered the ozone demand and formation of bromate during subsequent ozonation.  相似文献   

17.
《Water research》1996,30(6):1423-1430
The effectiveness of drinking water treatment options for eliminating seasonal taste and odor events caused by phytoplankton blooms in the source water were evaluated. Dissolved air flotation (DAF), conventional gravity sedimentation (CGS), ozonation and granulated activated carbon (GAC) filtration processes were studied in pilot plant-scale experiments. Clarification by DAF consistently produced water with lower turbidity and particle counts (NP > 2.0 μm/ml) than CGS. Mean particle counts detected in water following DAF and CGS treatment were 3600 and 7500 particles/ml, respectively. The absolute abundance of phytoplankton in the source water was the single most important factor influencing DAF and CGS removal efficiency. Removal efficiencies for both processes were poorer at low source water biomass (near 250 μg/l) than at higher biomass concentrations (1750 μg/l). For the eight phytoplankton taxa present in the source water, DAF and CGS removal ranged from 29–85% and 21–49%, respectively. With the exception of the total nanoplankton for which removal by both processes was comparable, all other taxa were removed more efficiently by DAF than CGS. Flavor profile analysis (FPA) indicated that DAF alone could not completely mitigate the strong fishy, musty odors associated with some phytoplankton blooms. Ozone altered the fishy odor to an undesirable “plastic-like” odor. Only filtration through GAC/sand filters removed all odors. Removal of soluble constituents such as color and total organic carbon (TOC) by DAF and CGS were comparable for most of the year. During phytoplankton blooms, however, TOC removal by DAF was significantly greater than by CGS. TOC and color removal were substantially greater through GAC than through anthracite filters. A combination of DAF clarification and GAC filtration was the most effective treatment combination for removal of particulates, color and taste and odor compounds.  相似文献   

18.
颗粒活性炭吸附去除黄浦江原水中有机物的研究   总被引:2,自引:0,他引:2  
采用超滤膜法分析了黄浦江原水和水厂常规工艺处理出水中有机物的分子质量(MW)分布以及颗粒活性炭(GAC)在不同吸附阶段吸附去除不同分子质量有机物的性能.试验结果表明,黄浦江原水及常规工艺出水中的溶解性有机物(DOC)以小分子为主,并主要集中在MW为10~30 ku和MW<1 ku的区间;活性炭吸附出水中的溶解性有机物仍然主要集中在小分子区间;吸附初期的活性炭对有机物的去除能力较强,其中对CODMn的去除率>83%,对UV254的去除率>90%;随着通水倍数的增大则活性炭的吸附能力逐渐下降,当通水倍数达到6 590.9时,对CODMn和UV254的去除率都只有25%左右;活性炭吸附的各个阶段对小分子有机物的去除率均较高,而对大分子有机物的去除率则较低,从吸附初期到吸附后期,对小分子有机物的去除率高出对大分子有机物的去除率,其百分比从10%增大到30%.  相似文献   

19.
Field evidence for copper mobilization by dissolved organic matter   总被引:8,自引:0,他引:8  
Fluxes of copper from the sediments to the water column in response to the presence of dissolved organic matter were measured in field enclosures placed on the floor of the Contrary Creek arm of Lake Anna, Virginia. Experimental chambers received a spike input of either sodium humate or phytoplankton; unamended chambers served as controls. Over the subsequent five days, water samples were withdrawn from the chambers and analyzed for total and dissolved copper, total and dissolved organic carbon (DOC) Eh, pH, dissolved oxygen, dissolved sulfides and heterotrophic microbial activity. Chambers amended with phytoplankton did not experience a rise in dissolved copper concentrations. Furthermore, the concentrations of dissolved copper in these chambers were not well-correlated with DOC concentrations (r = 0.1175, P = 0.642). Dissolved copper concentrations in chambers amended with sodium humate rose approximately 500% and remained elevated for the duration of the experimental trial (5 days). In this treatment, dissolved copper concentrations were well-correlated with DOC concentrations (r = 0.798, P < 0.005). The increase in dissolved copper in the chambers amended with sodium humate was observed to persist despite reducing conditions which were confirmed by redox measurements and the occurrence of dissolved sulfides. The addition of sodium humate to the chamber water resulted in a net mobilization of copper to the water column from the sediments. In contrast, dissolved organic carbon generated by the decomposition of phytoplankton did not appear to mobilize copper over the time interval examined. None of the changes in soluble copper concentrations could be related to Eh or pH effects. Supplementary laboratory experiments corroborated the field trials. The results suggest that long term (but not short term) products of decomposition processes may enhance the concentration of dissolved copper in the water column by the formation of soluble organometallic complexes.  相似文献   

20.
Immediate consequences of mechanical cutting of submersed macrophytes may include suspension of sediments and Aufwuchs and exudation from damaged tissues which can potentially alter water chemistry and metabolism. In the densely vegetated littoral of a shallow hardwater eutrophic lake, effects of cutting on concentrations of seston, dissolved organic carbon, biological oxygen demand of dissolved organic carbon, and particulate, dissolved unreactive, and dissolved reactive phosphorus were short lived or insignificant. In shallow areas, community photosynthesis and respiration were decreased by macrophyte removal. Use of this management approach on the limited basis tested does not appear to cause substantial detriment to the littoral environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号