首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
在THERMECMASTER-Z型热模拟试验机上,对锻态TB6钛合金在真应变为0.92、变形温度为800℃~1150℃、应变速率为0.001s-1~1s-1的条件下进行等温恒应变速率压缩试验,分析合金在β单相区条件下的热变形特点,并观察金相组织。结果表明,应变速率对合金流动应力的影响较显著;而变形温度对合金流动应力的影响在较高应变速率时较大,在较低应变速率时较小。动态再结晶晶粒尺寸和动态再结晶体积分数,随温度的升高而增大,随应变速率的增大而减小。从晶粒细化和动态再结晶组织均匀性考虑,当真应变为0.92时,变形温度选择在950℃~1050℃之间,应变速率选择在0.01s-1为宜。  相似文献   

2.
2219铝合金热压缩变形流变应力   总被引:2,自引:0,他引:2  
欧玲  孙斌  王智 《热加工工艺》2008,37(2):42-45
通过Gleeble-1500热模拟机对2219铝合金在应变速率为0.1~10s-1、变形温度为320~440℃的流变应力行为进行了研究.结果表明:在实验条件范围内,2219铝合金热压缩变形时,流变应力随变形温度的升高而降低,随变形速率提高而增大;可采用Zener-Hollomon参数的的双曲正弦函数来描述2219铝合金高温变形的峰值流变应力行为;获得的峰值流变应力解析式中,A、α和,n值分别为2.65×10 10s-1、0.020 MPa-1和6.91,热变形激活能Q为153.3kJ/mol.  相似文献   

3.
在温度为300℃~420℃、应变速率为0.001s-1~1s-1的变形条件下,采用Gleeble-1500热模拟机对AZ70镁合金热压缩变形特性进行了研究。结果表明,合金的流变应力随应变速率的增大而增大,随温度的升高而降低;在给定的变形条件下,计算出合金的变形激活能为132kJ/mol,应力指数为6.2;建立了合金高温变形的本构方程;降低变形温度和提高应变速率可使再结晶晶粒平均尺寸减小。根据实验分析得出,材料的最佳热加工工艺条件为变形温度340℃~400℃,应变速率0.001s-1~0.1s-1,并提出以低速为宜。  相似文献   

4.
在变形温度为420~540℃、应变速率为0.001~1 s-1的条件下,在Gleeble-1500热模拟试验机上采用圆柱体等温热压试验对6016铝合金的热变形流变应力行为进行研究,讨论实验条件对应变硬化指数n和应变速率敏感性指数m的影响.结果表明:6016铝合金流变应力受应变速率和变形温度的影响明显,流变应力随变形温度的升高而降低,随应变速率提高而增大;当温度大于420℃时,应变硬化指数n受温度和应变速率的影响较小;当温度为500℃、应变速率为0.001 s-1时,其应变速率敏感性指数m达到0.3036;可用Zener-Hollomon参数的双曲正弦形式来描述6016铝合金热压缩变形时的流变应力行为;热变形流变应力的拟合曲线与实验曲线能很好吻合.  相似文献   

5.
在变形温度420~540℃、应变速率0.001~1 s-1时,利用Gleeble-1500热模拟试验机采用圆柱体等温热压缩试验对6016铝合金热变形流变应力行为进行研究,讨论实验条件对应变硬化指数n和应变速率敏感性指数m的影响.结果表明:6016铝合金流变应力受应变速率和变形温度的影响明显,流变应力随变形温度升高而降低,随应变速率提高而增大;当温度大于420℃时,应变硬化指数n受温度和应变速率影响较小;温度为500℃、应变速率为0.001s-1时,其应变速率敏感性指数m达到0.3036;可用Zener-Hollomon参数的双曲正弦形式来描述6016铝合金热压缩变形时的流变应力行为;拟合曲线与实验曲线能很好吻合.  相似文献   

6.
AerMet100超高强度钢热变形行为   总被引:3,自引:0,他引:3  
在热模拟机上对AerMet100超高强度钢进行了恒温和恒应变速率的热压缩实验,温度范围是900℃~1100℃,应变速率范围是0.01s-1~10s-1。实测了高温下应力-应变关系曲线,观察了变形后的显微组织,计算了材料的激活能,并建立了峰值应力与变形温度和应变速率的关系。结果表明,材料的流动应力随着变形温度的升高而降低,随应变速率的增大而增大;材料在不同变形条件下其软化机制分别受动态回复和动态再结晶控制;在实验条件范围内,AerMet100超高强度钢的再结晶温度在1000℃~1050℃之间,材料的热变形激活能为261.2kJ/mol。  相似文献   

7.
采用Gleeble-1500D热模拟实验机,对AZ80镁合金在250℃~450℃之间,应变速率为0.001s-1、0.01s-1、0.1s-1、1s-1、5s-1进行热模拟压缩变形,对试样宏观形貌与变形温度和应变速率进行了分析,分析了流变应力与应变速度和温度的关系,结果表明:AZ80镁合金的压缩热变形属于动态再结晶型,镁合金的变形抗力随着变形温度的上升而减小,塑性随着变形温度的增加而有所提高。随变形温度的升高和应变速率的减小,流变应力峰值向应变减小的方向移动,同一变形速率下,变形温度越高所对应的应力值越低。  相似文献   

8.
在Gleeble-1500热模拟实验机上对Al-6Zn-2Mg-0.2Sc-0.1Zr合金进行等温压缩试验,建立了该合金在变形温度为350~500℃、应变速率为1~10 s-1条件下的热加工图。利用光学显微镜和扫描电镜观察了不同变形程度下合金的组织和热裂纹,确定了适宜的变形参数。结果表明:Al-6Zn-2Mg-0.2Sc-0.1Zr合金高温变形的峰值应力随变形温度的升高而降低,其适宜的热加工温度和应变速率范围为:T440℃,1.4 s-1ε3.5 s-1,单道次变形量小于60%。  相似文献   

9.
利用Gleeble-1500热力模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量0.7的条件下,对W-50%Cu复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行了研究和分析。试验结果表明:W-50%Cu复合材料高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-50%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-50%Cu复合材料DMM加工图分析了其变形机制和失稳机制,可确定其热加工工艺优先选择变形温度650~700℃、应变速率1~5 s-1或变形温度850~950℃、应变速率0.01~0.1 s-1。  相似文献   

10.
针对大型船用曲轴曲拐所用材料S34Mn V合金钢,利用Gleeble-3800热模拟实验机对其进行高温压缩实验,研究了S34Mn V合金钢在变形温度为950~1250℃、应变速率为0.001~10 s-1和压缩变形量为70%条件下的高温变形行为,得到了其真实应力-应变曲线。分析了变形温度、应变速率对S34Mn V合金钢高温流变行为的影响。结果表明,变形温度和应变速率对流动应力影响显著,流动应力随变形温度升高而下降,随应变速率增大而上升;低的应变速率、高的变形温度,更易于动态再结晶的发生,有利于降低流动应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号