首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 76 毫秒
1.
提出了一种可以同时作为储能介质与传热流体的新型相变微胶囊悬浮液(MPCS),设计和搭建试验台,分别在层流和湍流条件下在等热流密度的光滑圆管中对MPCS进行了强制对流换热实验,研究了悬浮液浓度、流量、泵送功率和加热速率对其流动及传热特性的影响。结果表明:对于质量分数为5%的MPCS,当微胶囊中相变材料分别处于固体、固体-液体和液体状态时,对应的努塞尔数平均增大了23.9%、20.5%和9.1%;与纯水相比,MPCS作为在热力系统应用的传热流体可以实现强化传热,但是需要在传热实验中控制好相变过程才能使MPCS的传热性能优于水。  相似文献   

2.
通过实验研究确定制备稳定的微胶囊相变悬浮液必须采用的最优化表面活性剂添加量和悬浮液pH值。采用全功能稳定性分析仪TURBISCAN LAb研究表面活性剂十二烷基硫酸钠(SDS)添加量和悬浮液pH值对物理稳定性的影响。结果表明,当SDS质量分数太低,即颗粒表面改性不彻底时,稳定性较差;质量分数太高,容易形成表面活性剂胶束沉淀,并同时加速相变微胶囊颗粒上浮,破坏微胶囊相变悬浮液的稳定性,在选定的SDS质量分数范围内,最佳质量分数为0.2%~0.4%;pH值低于7时,溶液颗粒分散性提高不明显,并且出现加快分层现象;pH值过高时,溶液中OH-过多,压缩双电层厚度,减弱颗粒分散性,溶液稳定性提高受到抑制,在选定的pH值范围内,密胺树脂壳材的悬浮液最佳pH值为8。抑制悬浮液的分层和团聚现象对于其在传热和储热中的应用有重要意义,研究结果给制备稳定的悬浮液提供了可靠的依据。  相似文献   

3.
用基液代替水来配置微胶囊相变悬浮液,并对实验数据的准确性进行了检验。在等热流密度环境下对管道内的该悬浮液进行加热实验,对相变微胶囊悬浮液的质量分数、St、入口过冷度、粒径和Re等因素影响强化换热的效果进行了分析。结果显示影响微胶囊相变悬浮液管内层流换热最主要的因素是微胶囊的质量分数和St。  相似文献   

4.
微胶囊相变悬浮液在空调系统中的应用前景   总被引:1,自引:0,他引:1  
赵兵全  赵镇南 《节能技术》2006,24(4):294-296
介绍了一种功能性热流体—微胶囊相变悬浮液,它的浓度为15%时,载冷能力是水的两倍多;处于湍流时,表现出非牛顿流体的特性,流动阻力小于水;浓度为20%时,层流对流换热的修正努塞尔数Nuc是单相流体的2~3倍,传热性能远优于单相流体。因此,微胶囊相变悬浮液应用于空调系统可大幅度提高换热器的传热性能和空调系统的运行效率,达到节能的效果。  相似文献   

5.
相变微胶囊悬浮液层流强迫对流换热实验研究   总被引:2,自引:0,他引:2  
对以溴代十六烷(C16H33Br)为相变材料的相变微胶囊悬浮液(MPCMS)作了管内层流恒定热流密度加热条件下的强化传热性能测试和分析.悬浮液质量浓度为5.0%、10.0%和15.8%(文中百分数若无特别指出均为质量分数),整体雷诺数和斯蒂芬数分别在400~1900和1.1~8.8范围内.实验结果表明:实验工况下与水相比,使用MPCMS可降低壁面温度3.9℃,Nux数可提高27%~42%,传热实验过程中MPCMS样品压降增加不大,压降可降低26.7%(um=1.3m/s),在其输传热综合效果较好.  相似文献   

6.
以石蜡为相变储能材料,开孔泡沫铜为强化传热介质,针对该文研制开发的模块式低温相变储能装置,搭建测试强化传热后的新型矩形腔体-内插U型管储能单元实验平台,实验研究不同热源温度与不同环境温度对储能散热过程与单元性能的影响。结果表明加入泡沫铜后的储能单元内部温差明显减小,温度分布均匀。储能单元换热量显著增大,缩短了储散热时间。在较低热源温度与较高环境温度下,添加泡沫铜对储能单元的储散热更具有优化效果,相对优化率分别达到47.5%和8.3%。  相似文献   

7.
在太阳能光伏热系统中,光伏电池温度过高会导致太阳能发电效率下降。相变微胶囊悬浮液(MEPCMS)是一种潜热型功能性流体,将其作为冷却介质用于太阳能光伏热系统可以有效降低光伏电池温度,提高系统的能量利用率。针对相变微胶囊易泄露、导热性差等问题提出了改性方法,使其具有光热转换功能并提升了综合性能。基于性能评价指标分析了太阳能光伏热系统性能的影响因素。结果发现,流速、浓度和太阳辐照量是影响MEPCMS在太阳能光伏热系统中换热性能的关键因素。适当增加MEPCMS浓度和流速能提高工质的换热性能,在降低光伏板温度的同时增加太阳辐照量和系统热电产量,但需结合太阳辐照量大小合理匹配工质的浓度和流速。未来研究方向可集中在提升MEPCMS在太阳能光伏热系统中的换热性能、探究运行参数和太阳辐照量之间的匹配关系、优化集热器结构、利用其蓄热性解决太阳能间歇性等方面。  相似文献   

8.
相变微胶囊悬浮液(MPCS)可作为热交换介质和储热流体,但其导热率较低导致其应用受到一定的限制。以水为基液使用相变微胶囊(MPCM)制备MPCS,加入氧化锌(ZnO)颗粒以提高MPCS导热率。使用旋转流变仪、差式热量扫描仪、导热仪分别测定了MPCS的黏度、相变潜热和导热系数等物理性质。设计并搭建了试验台,在内径6 mm的圆管中,使用水、MPCS以及ZnO@MPCS在层流和湍流下进行强制对流换热实验,通过对比其换热情况分析ZnO对MPCS换热特性的影响。结果表明:加入ZnO的MPCS具有良好的储热性和导热性,1%ZnO@5%MPCS导热系数较5%MPCS提高了17.9%。层流条件下MPCS的平均局部换热系数低于水,1%ZnO@5%MPCS平均局部换热系数比水高6.5%;湍流时,1%ZnO@5%MPCS在相同质量流量和功率下的平均局部换热系数相较于水提高了15.7%。  相似文献   

9.
通过实验方法研究了掺入TiO2纳米颗粒的相变悬浮液粘性和导热系数。研究表明,当纳米颗粒浓度不超过5%时,悬浮液仍可被视为牛顿流体,悬浮液的粘性随纳米颗粒浓度增加以非线性方式增加;当纳米质量颗粒浓度为5%时,相变悬浮液的粘性提高约23%。纳米颗粒的加入能够显著提高相变悬浮液的导热系数,当纳米颗粒质量浓度为5%时,相变悬浮液导热系数提高约7%。当纳米颗粒浓度较低时,纳米颗粒对相变悬浮液导热系数的提高幅度要高于对水的提高幅度。文中从不同方面分析了使用这种新型悬浮液作为传热工质的优势。  相似文献   

10.
相变材料微胶囊的国内外研究现状   总被引:1,自引:0,他引:1  
相变材料微胶囊作为一种复合材料,解决了固液相变材料相变时体积变化以及泄漏问题;提供了大的传热面积改善了传热;还可防止相变材料的性质改变。相变材料微胶囊已经广泛应用于纺织品、传热流体、建筑物、军事、农业等领域。作为近年来研究热点,详细介绍了这种新型的复合材料特点、制备方法及目前研究现状。  相似文献   

11.
A new microencapsulated PCM (Phase Change Material) slurry (MEPCS) at high concentration (45% w/w) was developed based on microencapsulated Rubitherm RT6. Its heat storage and heat transfer characteristics have been experimentally investigated in order to assess its suitability for integration into a low temperature heat storage system for solar air conditioning applications. Differential scanning calorimetry tests have been conducted to evaluate the cold storage capacity and phase change temperature range. An experimental setup was built in order to quantify the natural convection heat transfer occurring from a vertical helically coiled tube immersed in the MEPCS. First, tests were carried out using water in order to obtain natural convection heat transfer correlations and then a comparison was made with the results obtained for the MEPCS. It was found that inside the phase change interval the values of the heat transfer coefficient for the MEPCS were significantly higher than for water, under identical temperature conditions.  相似文献   

12.
In a photovoltaic/thermal (PV/T) collector, a portion of absorbed solar energy is transformed into electrical energy, and the remaining part is transformed into thermal energy. Increasing waste heat collection and energy conversion rates are important to improve the performance of the PV/T collector. The utilization of microencapsulated phase change slurry (MPCS) in a PV/T collector to cool photovoltaic modules is an effective way, and electrical and thermal performances of the collector are improved. To investigate influences of operating parameters on performances of PV/T collector, numerical simulation is put into effect to analyze influences of the mass fraction of MPCS on the collector performance. The influences of MPCS mass flow rate and collector channel height on collector performances are also studied. When the flow rate is 0.005 kg/s and the channel height is 0.010 m, the PV/T collector obtains the best net efficiency with a MPCS mass concentration of 20 wt%. But electrical efficiency difference between 15 and 20 wt% is not obvious. With the growth in mass fraction, PV temperature drops more and more slowly because outlet fluid has not fully melt. Take PV/T collector performances into consideration, 15 wt% MPCS is a better choice to cool photovoltaic modules.  相似文献   

13.
Microencapsulated phase change material (MEPCM) is formed by packing PCM into a microcapsule with a solid but flexible shell. MEPCM can be used to enhance liquid cooling performance considerably. In this paper, experiments on the preparation of MEPCM with a double‐layered shell have been conducted. An in‐situ polymerization microencapsulation process was used to prepare the MEPCM with melamine resin as the shell material and n‐Docosane (C22H46) as the core material. Interesting parameters like the size of the prepared MEPCM, the core mass fraction in the MEPCM, and the thermal storage capability of the prepared MEPCM have been measured and analyzed. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(1): 28–37, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20138  相似文献   

14.
Heat storage experiment by natural convection in rectangular enclosures heated from bottom has been conducted with fluid slurry composed of microencapsulated phase change material (PCM). The microencapsulated PCM is prepared by in-situ polymerization method, where the core materials are composed of several kinds of n-paraffin waxes (mainly nonadecane) and the membrane is a type of melamine resin. Its slurry mixed with water is used in this study, and shows a peak value in the specific heat capacity with latent heat at the temperature of about T=31 °C. The influences of the phase change material on heat storage and the heat transfer process, as well as effects of PCM mass concentration Cm on the microcapsule slurry, temperature of heat storage TH and a horizontal enclosure height H are also investigated. Transient heat transfer coefficient α, heat storage capacity Q and completion time of heat storage tc are discussed.  相似文献   

15.
通过建立与工业实际相似的加肋同心套管式潜热蓄热器模拟实验台,对潜热蓄热器内通流体时的充热、放热过程进行了实验研究。实验得出了流体的出口温度、充热量和放热量随时间的变化规律。  相似文献   

16.
Due to its large apparent specific heat during the phase change period, microencapsulated phase change material slurry (MPCMS) has been suggested as a medium for heat transfer. In this paper, the convective heat transfer characteristics of MPCMS flowing in a circular tube were experimentally and numerically investigated. The enhanced convective heat transfer mechanism of MPCMS, especially in the thermal fully developed range, was analyzed by using the enthalpy model. Three kinds of fluid–pure water, micro-particle slurry and MPCMS were numerically investigated. The results show that in the phase change heat transfer region the Ste number and the Mr number are the most important parameters influencing the Nusselt number fluctuation profile and the dimensionless wall temperature. Reb, dp and c also influence the Nusselt number profile and the dimensionless wall temperature, but they are independent of phase change process.  相似文献   

17.
A new microencapsulated phase change material slurry based on microencapsulated Rubitherm RT6 at high concentration (45% w/w) was tested. Some heat storage properties and heat transfer characteristics have been experimentally investigated in order to assess its suitability for the integration into a low temperature heat storage system for solar air conditioning applications. DSC tests were conducted to evaluate the cold storage capacity and phase change temperature range. A phase change interval of approximately 3 °C and a hysteresis behaviour of the enthalpy were identified. An experimental set-up was built in order to quantify the natural convection heat transfer occurring from a vertical helically coiled tube immersed in the phase change material slurry. First, tests were carried out using water in order to obtain natural convection heat transfer correlations. Then a comparison was conducted with the results obtained for the phase change material slurry. It was found that the values of the heat transfer coefficient for the phase change material slurry were higher than for water, under identical temperature conditions inside the phase change interval.  相似文献   

18.
建立了三种不同蓄冷球球径堆叠方式的相变蓄冷装置模型,对其进行了数值模拟以研究其内部传热及相变特性。结果表明:随着流速的提高、蓄冷球直径的减小,蓄冷结束后三种方案中装置内蓄冷球的凝固率提升显著;双球径方案与单球径方案装置内蓄冷球凝固率随时间变化的规律在蓄冷过程初段相类似,但两方案中相同球径部分蓄冷球相变结束,双球径方案中发生相变的蓄冷球由大直径转变为小直径时,其凝固率随时间变化的速度逐渐超过单球径方案。该研究可为相变蓄冷装置的实际设计及性能优化提供参考  相似文献   

19.
The electronic industry is increasingly investigating different approaches for the cooling of electronic equipment. The use of bulk phase change materials is also a promising approach for energy storage. The introduction of microencapsulated phase change materials combined with nanofluids can be beneficial. The combined use of a nanofluid and a metallic porous material can be used to mitigate problems resulting from small thermal conductivity. This study investigated a ternary mixture of water with a nanofluid and a microencapsulated phase change material in a porous medium. The model was previously validated with experimental data using a 0.5%vol concentration nanofluid in water. The results revealed that heat storage capability can be achieved as long as the microencapsulated phase change materials, which consists of encapsulated eicosane, is at a concentration of 20%. Because the melting temperature of microencapsulated phase change materials is approximately 36°C , energy storage at a low flow rate and heat flux is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号