首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic Performance of Ce/Zr Oxides Catalysts for Soot Combustion   总被引:2,自引:0,他引:2  
Catalytic performances of a series Ce/Zr oxides(CexZr1-xO2 )for soot combustion were investigated. The catalytic activities for soot combustion were affected by both the Ce/Zr ratio and the oxygen storageinvestigated. Thecapability of Ce/Zr oxides. O2-TPD and TG-DTA results indicate that CexZr1-xO2 can release its lattice oxygen continuously and promote soot combustion even no oxygen occurs in the reaction atmosphere. Among these Ce/Zr oxides, Ce0.5Zr0.5O2 has the best catalytic activity, and the ignition temperature of soot combustion was about 410℃, which is close to the practical exhaust temperature of the diesel engine.  相似文献   

2.
Nanocrystalline rare earth mixed oxides DyFexCo1-xO3-δ were prepared by sol-gel method and characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG-DTA) and scanning electron microscope(SEM). The results show that DyFexCo1-xO3-δ has the structure of perovskite type at 800℃ for 2 h calcination.The conductivity of the materials at different temperature was measured by four-probe instrumentation and two-pole method. The results show that the conductivity of mixed oxides DyFexCo1-xO3-δ is higher than those of un-mixed oxides DyFeO3 and DyCoO3 and the conductivity is the best at x = 0.8 in the matter of DyFexCo1-xO3-δ. The conduetivity of these materials always increases with the temperature rising and there is an apparent change between 600 and 800℃. However, the spinodals are different with different ration of Fe^3 and Co^3 . This kind of oxide is a conductive pottery material.  相似文献   

3.
Solid electrolytes Ce0.8Sm0.2–xPrxO2–δ(x=0.02, 0.04, 0.06, 0.08) were prepared by citric-nitrate method. The microstructure and electrical properties of such materials were examined by X-ray diffraction(XRD), atomic force microscopy(AFM), Raman spectroscopy(Raman), X-ray photoelectron spectroscopy(XPS) and impedance spectroscopy analyses. Specifically, results from XRD analysis showed that samples calcined at 800 oC for 4 h possessed single-phase cubic fluorite structure, and the average grain size was found to be 36–45 nm. Further Raman spectral analysis indicated that oxygen vacancies should be present in the cubic fluorite structure of Ce0.8Sm0.12Pr0.08O2–δ, and Pr-doping seemed to increase their concentration significantly. AFM images showed that the grain size grew with the increase of Pr substitution. XPS analysis confirmed the existence of oxygen vacancies in the lattice of Ce0.8Sm0.12Pr0.08O2–δ in which Pr3+ and Pr4+ co-existed. AC impedance spectra indicated that the conductivity of Ce0.8Sm0.2–xPrxO2–δincreased with the increase of Pr-doping but the conduction activation energy decreased. Notably, it appeared that sample Ce0.8Sm0.12Pr0.08O2–δ(σ600 oC=1.21×10–2 S/cm, Ea=0.77 e V) exhibited conductivity superior to Ce0.8Sm0.2O1.9(σ600 oC=2.22×10–3 S/cm, Ea=1.02 e V) because it possessed higher conductivity and lower activation energy. At 600 oC, the conductivity of Ce0.8Sm0.12Pr0.08O2–δwas 4.45 times higher than that of the un-doped material.  相似文献   

4.
The solid solutions Ce0.9RE0.102-δ(RE=Pr,Nd,Sm,Gd,Dy) were prepared by sol-gel method, The XRD measurement shows that the solid solution is crystallized in cubic fluorite-type structure and the cell volume of Ce0.9RE0.1O2-δ decreases with the increase of atomic number of RE. The ionic conduction for Ce0.9RE0.1O2-δ was measured by impedance spectroscopy and Ce0.9Pr0.1O2-δ has better conductivity. The linear thermal expansion of Ce0.9RE0.1O2-δ decreases with the increase of atomic number of RE.  相似文献   

5.
MnO and CeO2 powders were mechanically mixed by a spatula and by milling to obtain loose-contact and tight-contact mixed oxides,respectively.The monoxides and their physical mixtures were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET),X-ray photoelectron spectroscopy(XPS),Raman,O2 temperature-programmed desorption(O2-TPD),H2 temperature-programmed reduction(H2-TPR) and NO temperature-programmed oxidation(NO-TPO).The MnOx-CeO2 solid solutions did not form without any calcination process.The oxidation state of manganese tended to increase while the ionic valence of cerium decreased in the mixed oxides,accompanied with the formation of oxygen vacancies.This long-ranged electronic interaction occured more significantly in the tight-contact mixture of MnO and CeO2.The formation of more Mn4+and oxygen vacancies promoted the catalytic oxidation of NO in an oxygen-rich atmosphere.  相似文献   

6.
(Ba0.5Sr0.5)1-xPrxCo0.8Fe0.2O3-δ(BSPCFx;x=0.00-0.30) oxides were synthesized by a sol-gel thermolysis process using combination of PVA and urea,and were also investigated as cathode material for intermediate temperature solid oxide fuel cells(IT-SOFCs).X-ray diffraction(XRD) results showed that all the samples formed a single phase cubic pervoskite-type structure after being calcined at 950 oC for 5 h and the lattice constant decreased with the Pr content increasing.The electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) was greatly enhanced by Pr-doping.The thermal expansion coefficient(TEC) of BSPCFx was increased with the content of Pr increasing,and all the thermal expansion curves had an inflection at about 250-400 oC due to the thermal-induced lattice oxygen loss and the reaction of Co and Fe ion.Ac impedance analysis indicated that BSPCFx possessed better electrochemical performance.The polarization resistance of the sample with x=0.2 was only ~0.948 Ω cm2 at 500 oC,significantly lower than that of BSCF(~2.488 Ω cm2).  相似文献   

7.
CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent.The structures and oxygen storage capacities of these ternary oxides were characterized by XRD,Raman spectra and oxygen storage capacity measurements.It was found that Al 3+ and Zr 4+ inserted into CeO2 lattice,forming CeO2-ZrO2-Al2O3 solid solution.The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity.The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity(122.0 mmolO2/molCeO2)were obtained with the aluminium isopropoxide concentration at 0.2 wt.% in the solution.  相似文献   

8.
The metallic substrate-catalysts with different subsistence states of CeO2-ZrO2 mixed oxides were prepared and the catalytic properties were investigated. The studies on CeO2-ZrO2-V2O5-CuO mixed oxides which were prepared by coprecipitation, show that the doping of V5 and Cu2 in CeO2-ZrO2 mixed oxides can enhance the catalytic activity and thermal stability of coating materials. Moreover, different additives were doped in slurries of γ-Al2O3 to investigate the influence of additives on oxidation activity of catalysts. The mixture of ceria-zirconia, alkali metals and other rare earths acting as additives exhibits promotion effect on oxidation activity by optimizing the distribution of oxygen on the surface and in the bulk of ceria species. This mentioned mixture was mixed with γ-Al2O3 and a newly proposed active component to prepare a new catalyst. Afterward, the influence of thermal treatment on the new catalyst were investigated by calcinations at 500, 650, 750, 800, 850 and 900 ℃ for 2 h. The light-off curves of CO and HC show that after being treated at 650~750 ℃, catalysts present the best activity. XRD patterns show that ceria and zirconia species in the newly proposed active component form a phase of extra CeO2-ZrO2 mixed oxides on the surface of catalysts after the thermal treatment at 750 ℃, which has practical value for improving the preparation process and promoting the catalytic properties. Moreover, XPS results imply the existence of Ce1-xPdxO2-σ and Ce1-xPtxO2-σ on the surface of these treated samples, which may show influence on the catalytic activities.  相似文献   

9.
Rare earth-doped copper-manganese mixed oxide catalysts were prepared by coprecipitation and mechanical mixing using copper sulfate, manganese sulfate, and rare-earth oxides REO (REO indicates La2O3, CeO2, Y2O3, or Pr6O11) as raw materials. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed reduc-tion of oxidized surfaces (s-TPR), and temperature-programmed desorption (TPD). Catalytic activities were tested for a water-gas shift reaction. Doping rare earth oxides did not alter the crystal structure of the original copper-manganese mixed oxides but changed the interplanar spacing, adsorption performance and reaction performance. Doping with La2O3 enhanced the activity and stability of Cu-Mn mixed oxides because of high copper distribution and fine reduction. Doping with CeO2 and Y2O3 also decreased the reduc-tion temperatures of the samples to different degrees while improving the dispersion of Cu on the surface, thus, catalytic activity was better than that of undoped Cu-Mn sample. The Pr6O11-doped sample was difficult to reduce, the dispersion of surface coppers was lowered, resulting in poor activity.  相似文献   

10.
Transference of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst prepared by an impregnation method were characterized by in-situ XRD, Raman spectroscopy and H2-TPR techniques. For the catalyst calcined at 300℃, two kinds of CuO species coexist on the surface, that is, highly dispersed and bulk CuO crystalline phase. Four kinds of CuO species are present for the catalyst calcined at 600 ℃, : (1) highly dispersed CuO, (2) bulk CuO on the surface, (3) bulk CuO in the internal layer of CeO2, and (4) CuAl2O4 formed from CuO-Al2O3 interaction. For the catalyst calcined at 800 ℃,C, besides very little highly dispersed and bulk CuO on the surface, most of the CuO has transferred into the internal layer of CeO2 and the mass of CuAl2O4 are increased. At 900 ℃,, all of CuO has diffused into the internal layer of CeO2 and formed CuAl2O4. The results show that the distribution of CuO species in the catalysts depends on the calcination temperature; the different CuO species can be effectively confirmed by in-situ XRD, Raman spectroscopy and H2-TPR techniques.  相似文献   

11.
The effect of Co doping on ceria-zirconia mixed oxides was investigated for Co 0.1 Ce 0.6 Zr 0.3 O x sample prepared by sol-gel method. The Pd-only three-way catalyst (TWC) was obtained by incipient wetness impregnation with 0.5 wt.% Pd loading. The structural and oxygen handling properties were analyzed by X-ray diffraction (XRD), H 2 -temperature programmed reduction (H 2 -TPR) and the dynamic oxygen storage capacity (DOSC). The introduction of Co into ceria-zirconia lattice strongly modified the mobility of oxygen and enhanced the DOSC performance. Pd-only TWC based on the Co 0.1 Ce 0.6 Zr 0.3 O x support exhibited superior activity for water-gas shift and steam reforming and amplified amplitude of stoichiometric window.  相似文献   

12.
Chemical interaction of Ce-Fe mixed oxides was investigated in methane selective oxidation via methane temperature programmed reduction and methane isothermal reaction tests over Ce-Fe oxygen carriers. In methane temperature programmed reduction test, Ce-Fe oxide behaved complete oxidation at the lower temperature and selective oxidation at higher temperatures. Ce-Fe mixed oxides with the Fe content in the range of 0.1–0.5 was able to produce syngas with high selectivity in high-temperature range(800–900 °C), and a higher Fe amount over 0.5 seemed to depress the CO formation. In isothermal reaction, complete oxidation occurred at beginning following with selective oxidation later. Ce1–xFexO2–δ oxygen carriers(x≤0.5) were proved to be suitable for the selective oxidation of methane. Ce-Fe mixed oxides had the well-pleasing reducibility with high oxygen releasing rate and CO selectivity due to the interaction between Ce and Fe species. Strong chemical interaction of Ce-Fe mixed oxides originated from both Fe*activated CeO2 and Ce3+ activated iron oxides(FeOm), and those chemical interaction greatly enhanced the oxygen mobility and selectivity.  相似文献   

13.
Four kinds of CeO2-ZrO2 mixed oxides, i.e., a physical mixture of ceria and zirconia (CZP), zirconia-coated ceria (ZCC), ceria-coated zirconia (CCZ) and a chemical mixture of celia and zirconia (CZC), were prepared. The oxygen storage capacity (OSC) measurements at 500℃ were performed under transient and stationary reaction conditions. All the curves of CO2 evolution during CO-O2 cycles presented a bimodal shape. The fast peak was primarily the result of the reaction of CO with the oxygen from the oxides, which was mainly determined by the nature of the material The sec- ond peak was mostly related to the CO2 adsorption behavior and was highly influenced by the surface area and the number of surface active sites. As a result, OSC activity of the samples followed in the order of CZC 〉 CCZ 〉 ZCC=CZP.  相似文献   

14.
The three-way catalysts (TWCs) promoters Ce0.6Zr0.4- x TbxO2-y were prepared by sol-gel method. BET surface areas analysis indicated that an increase of the dopant Tb content from x = 0.05 to x = 0.15 favors an increase of surface area from 66.8 to 80.4 m^2· g^-1 compared with the undoped sample Ce0 .6oZr0.40O2 65.1 m^2·g^- 1 after calcination at 650℃. Transmission electron microscopy (TEM) observation indicated that the doped samples have a higher thermal stability. The XRD and Raman spectra confirmed that the Ce0.6Zr0.4-xTbxO2-y cubic solid solution is formed. XPS analysis revealed that Ce and Tb mainly existed in the form of Ce^4+ and Tb^3 + , and Zr existed in the form of Zr^4+ on the surface of the samples. The doped samples were homogenous in composition ; the introduction of Tb into the CeO2-ZrO2 promoters resuited in the formation of a solid solution, and the concentration of surface lattice oxygen was increased.  相似文献   

15.
CeO2-ZrO2 mixed oxide(Ce0.6Zr0.4O2) prepared by microwave-assisted heating co-precipitation was used as a support to prepare a series of CuO/Ce0.6Zr0.4O2 catalysts with various CuO contents(0 wt.%–15 wt.%) via the method of incipient-wetness impregnation.The obtained CuO/Ce0.6Zr0.4O2 samples were characterized by N2 adsorption,XRD,Raman,TEM and H2-TPR technologies,and their catalytic activities for CO oxidation were investigated.The results showed that the activity of CuO/Ce0.6Zr0.4O2 catalyst was strongly influenced by the content of CuO,and the catalyst with 10 wt.% CuO exhibited the best catalytic activity in CO oxidation,which could be attributed to the high dispersion and reducibility of CuO,and high oxygen vacancy concentration in the catalyst.  相似文献   

16.
Adding rare earth oxide CeO2 with variable valences to La2O3 formed a mixture of rare earth oxides. By means of dipping CeO2, La2O3 and their mixture, whose carriers were all γ-Al2O3, were used as the catalyst for the reduction of SO2 by CO. The activation process of this catalyst and the impact of temperature and reactant concentration on the activation process were investigated. Using X-ray diffraction, the structure characteristics of catalyst before and after reaction were analyzed to reveal the change of phase structure. The result shows that the rare earth oxide mixtures composing of CeO2 and La2O3, as the catalyst for the reduction of SO2 by CO, diminish activation temperature 50~100℃ less and have higher activity than a single oxide CeO2 or La2O3. The reason possibl is that La2O3 goes into in the lattice of CeO2 to form solid phase complex CeO2-La2O3 and increases the capability of CeO2-La2O3/γ-Al2O3 catalyst to store oxygen, which supplies the redox of CeO2 reaction with a better condition. At the same time, elemental sulfur formed in the redox reaction impels La203 to be transformed to activation phase La2O2S in a lower temperature, which can be explained with the synergism between redox reaction and COS intermediate mechanism reaction.  相似文献   

17.
CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (OSC) of the samples. The doping method brought about strong interactions between manganese oxide and ceria, both in the bulk and on the surface. Only a small part of Mn cations are incorporated into the ceria lattice to form solid solutions and the remaining are left on the surface as finely dispersed Mn3O4. The OSC behaviors of the materials are influenced by the doping amount of Mn and the solubility of Mn in the CeO2 lattice. The OSC is more easily affected by available contents of oxygen storage components when the measurement frequency is low. Comparatively, the concentration of lattice defects, which affects the mobility of bulk oxygen, is the determining factor under high frequency.  相似文献   

18.
Complete oxidation of benzene over supported manganese oxides catalysts was studied.Composite supports Ce0.5+xZr0.4–xLa0.1O1.95-Al2O3 (x=0,0.1,0.2,0.3,0.4),and CeO2-Al2O3 were prepared by co-precipitation method,and manganese oxides (MnOx) catalysts were prepared by incipient wetness method.Catalytic activity was performed in a conventional fixed bed flow reactor.Among these catalysts,MnOx supported on Ce0.8Zr0.1La0.1O1.95-Al2O3 was found to have the highest catalytic activity for benzene oxidation.The comp...  相似文献   

19.
Temperature programmed reduction (TPR) study was carried out for CeO2/A12O3 and CeO2/ZrO2 catalysts to evaluate oxygen storage property induced by a facile redox cycling of Ce ion. The CeO2/ZrO2 catalyst possesses excellent oxygen storage activity at 373 K after reduction above 1173 K although the oxygen storage of CeO2/Al2O3 catalyst after reduction above 1173 K is poor because of the formation of CeAlO3. Consequently, the oxygen storage on the CeO2/ZrO2 catalyst smoothly occurs from low temperatures when the catalyst is reduced even at high temperatures.  相似文献   

20.
The effect of H2O2 on the properties of Ce0.65Zr0.35O2 was explored by treating cerium nitrate and zirconium nitrate with a mixed aqueous solution of ammonia and ammonia-carbonate in the presence/absence of H2O2 . The resultant products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption, oxygen storage capacity (OSC) and H2-temperature-programmed reduction (H2-TPR). The presence of H2O2 was found to have profound effect on powder properties such as surface area, crystallite size of the samples. It was also shown that the addition of H2O2 favored the incorporation of Zr4+ into CeO2 lattice, which facilitated the formation of CeO2-ZrO2 solid solution, and enhanced the thermal stability of the samples. OSC and H2-TPR studies indicated that the use of H2O2 enhanced the OSC and redox properties. Catalytic activity tests showed that as a support, the Ce0.65Zr0.35O2 prepared in the presence of H2O2 was more suitable for three-way catalyst. The corresponding Pd-only three-way catalyst demonstrated outstanding performance: wide air to fuel operation window, low light-off and total conversion temperature for the conversion of C3H8, NO and CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号