首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
LNG接收站蒸发器(BOG)的主要来源有:卸船时LNG进入储罐导致罐内LNG体积变化,以及环境温度、大气压变化、罐内泵电机运转、保冷循环、槽车装车时返回气等外界环境的影响,以此分析BOG产生的主要因素,在此基础上,以国内某大型LNG接收站为例,从BOG产生的机理出发,对应分析降低接收站BOG产生的措施,在外输量较小的前提下,从BOG压缩机的能耗角度科学合理地节约投资和降低生产成本。  相似文献   

2.
仇德朋 《化工设计》2022,(6):21-23+41+1
LNG接收站在运行过程中会产生BOG(boil-off gas,蒸发气),如果不及时处理会造成接收站超压,而不得不放空至火炬燃烧,既浪费能源又污染环境。目前,对于接收站正常操作工况,BOG通常采用再冷凝的工艺进行处理。其中,BOG压缩机是再冷凝处理工艺中的重要设备之一,通常选用往复式压缩机用于增压、输送BOG至再冷凝器。而随着接收站规模大型化,BOG产生量会大幅增加,受限于往复式压缩机的单台处理能力,需要设置多台压缩机,给运行、检维修等带来了更多的困难与不确定性。基于此,本文对离心式压缩机用于接收站中的BOG处理可行性进行研究与分析,为其它潜在应用的接收站提供一定的参考与借鉴。  相似文献   

3.
LNG接收站的功能是接收、储存和气化LNG,并通过管网向下游用户供气。由于在卸船时LNG进人储罐导致罐内LNG体积变化会产生大量的蒸发气(BOG)。为了维持储罐压力的稳定,必须处理掉过量的BOG。本文以某LNG项目为例,探讨BOG压缩机处理能力的计算方法以及选型。  相似文献   

4.
LNG接收站BOG气体处理工艺   总被引:16,自引:0,他引:16  
刘浩  金国强 《化工设计》2006,16(1):13-16
介绍LNG接收站BOG气体两种不同处理方式,即再冷凝工艺和直接压缩工艺。运用广义泊努利方程定性分析和定量计算,指出再冷凝工艺更为节能。通过流程模拟,提出两种处理方式的适用范围。  相似文献   

5.
薛倩  刘名瑞 《当代化工》2014,(12):2612-2614,2620
LNG接收站的蒸发气(BOG)处理工艺包括直接压缩工艺和再冷凝工艺。但是目前的BOG处理工艺存在系统能耗大、外输负荷波动时工艺操作困难,再冷凝器的液位波动不稳定,控制系统稳定性较差等缺点。本文论述了目前国内外LNG接收站中的BOG处理工艺优化技术方面的发展概况,指出了国内在这方面存在的问题,为今后开展这方面的研究提供了可靠的依据。  相似文献   

6.
介绍了几种不同的LNG接收站BOG处理工艺,分析了再冷凝工艺、直接压缩工艺及直接压缩+再冷凝工艺等不同BOG处理工艺的特点和适用范围,并以某LNG接收站为例,给出了BOG处理方式的比选及优化思路,提出了BOG"零"排放的理念。  相似文献   

7.
LNG接收站BOG多阶压缩再液化工艺优化分析   总被引:5,自引:2,他引:3       下载免费PDF全文
李亚军  陈蒙 《化工学报》2013,64(3):986-992
LNG接收站蒸发气体(BOG)处理量和液化天然气(LNG)外输量的波动对BOG再冷凝工艺提出低能耗、大弹性、易操作的要求。以系统总能耗最小为目标函数,对建立的BOG多阶压缩再液化工艺模型中压缩阶数和阶压比等参数进行了优化,并分析了该工艺模型在工况波动影响系统能耗时的各阶压比的抗干扰性及系统的操作弹性。结果表明:多阶压缩工艺系统阶数越多,系统的总压比、总能耗越小,BOG处理能力也越大;但随着系统阶数的增加,节能效果降低。多阶再液化工艺中二阶系统比现有一阶系统的操作弹性增大12%,且在LNG与BOG质量比≤10时,二阶系统的BOG压缩功耗可节约33%以上。针对一般气源型接收站工况,二阶系统是节能且操作弹性大的BOG处理工艺。  相似文献   

8.
LNG接收站在运行过程中会产生大量的BOG,一般大型LNG接收站均采用再冷凝工艺对BOG进行处理。BOG处理系统是LNG接收站所有工艺系统的核心组成部分,BOG处理系统的合理配置不仅能为接收站的安全节能运行提供保障,而且也能节省投资、降低运营成本。本文通过对海南LNG接收站BOG处理系统的配置进行详细阐述,以期望对类似接收站的建设提供参考。  相似文献   

9.
通过从LNG接收站的实际情况出发,梳理了BOG的产生因素,主要包括热量入侵、储罐压力、初始充满率、LNG组分以及储罐进出料,并从以上角度入手,论述分析了多种可降低BOG产生量的预防措施,以期节约资源,降低成本,提高经济效益。  相似文献   

10.
LNG接收站在运行过程中会产生蒸发气(BOG),若不及时处理会造成接收站超压,而不得不放空至火炬燃烧,既浪费能源又污染环境。对于接收站正常操作工况下产生的BOG,通常采用再冷凝的工艺进行处理。介绍了国内对于BOG再冷凝工艺存在的2种设计理念,分析了固定LNG/BOG流量比例的设计模式存在的问题,对于设计理念中不完善部分进行了讨论;同时结合现场实际操作中出现的问题,验证该设计会导致再冷凝器中的液位出现较大波动,影响再冷凝器和整个接收站的稳定运行。对上述设计模式进行了优化,通过改变LNG与BOG流量比值,使再冷凝器内LNG为饱和状态,保证了再冷凝器的稳定运行。  相似文献   

11.
液化天然气接收终端小型实验装置流程设计   总被引:1,自引:0,他引:1       下载免费PDF全文
海上进口液化天然气(LNG)运输船到达后,通过接收终端卸载、储存、汽化后输送给用户。浙江大学制冷与低温研究所与中石油管道研究中心合作,设计了一套额定流量为2m3·h-1的LNG接收终端小型实验装置,用于模拟终端运行重要功能和操作特性,包括卸载、储存及汽化过程,同时可提供一般LNG流动特性、分层流动、低温阀门检测、天然气泄漏危险的评估。本实验装置考虑LNG冷能利用实验对装置的扩建需求。通过运行该模拟装置,可以掌握LNG接收终端的操作规律,并对控制、安全等方面积累实际经验。本文给出了该实验装置流程设计和AspenPlus数值模拟结果。  相似文献   

12.
以大连液化天然气(LNG)接收站为例,利用Aspen软件对LNG接收站蒸发气(BOG)处理工艺流程进行分析。提出了BOG再冷凝液化与直接压缩混合使用的运行方案,并且在再冷凝工艺流程中增加预冷装置。分析结果表明:当接收站能够稳定提供足够量LNG时,系统优先选择再冷凝工艺路线,否则自动切换至高压压缩工艺路线,并直接输送至管网。该混合使用方案能够解决因储罐及管网内BOG压力过高而放空所造成的能源浪费问题。再冷凝工艺流程中,加装预冷装置之后,压缩机较加装之前节约能耗37.4%。  相似文献   

13.
液化天然气接收站蒸发气体再冷凝工艺的优化   总被引:7,自引:2,他引:5       下载免费PDF全文
杨志国  李亚军 《化工学报》2009,60(11):2876-2881
针对液化天然气(LNG)接收站的蒸发气体(BOG)再冷凝工艺系统能耗偏高的问题,对现有BOG再冷凝系统进行了工艺流程优化。通过对BOG压缩机入口温度、BOG压比及物料比等影响BOG再冷凝工艺能耗的主要运行参数的分析,提出了利用高压LNG预冷增压后的BOG,降低BOG压缩机压比的工艺流程。优化后的BOG再冷凝工艺较原工艺可节约BOG压缩机能量消耗32. 5%,且优化后的流程改善了LNG下游管网输气峰、谷负荷波动时的操作弹性,有较好的调峰功能。  相似文献   

14.
以国外工艺为基础,结合实际设计经验,对比分析了2种主要的液化天然气(LNG)接收站蒸发气(BOG)产生量的计算方法。并且以国内某LNG接收站项目为实例进行实际计算,对其中各自的优缺点进行具体说明,为接收站BOG产生量的计算以及BOG压缩机选型提供借鉴参考意义。  相似文献   

15.
通过分析研究BOG温度和BOG压缩机压比等主要参数对再冷凝工艺的影响,结合输气低谷期的外输特点,在原工艺流程压缩机出口处增设换热器,通过修改流程实现了高压泵出口低温LNG对压缩机出口高温BOG的预冷,既大幅降低完全冷凝BOG所需LNG量,又可节约运行能耗,实现了再冷凝工艺的优化。优化后的工艺对于提高输气低谷期LNG接收站的综合经济效益具有重要意义,存在广阔的应用前景。  相似文献   

16.
危险源及可操作性(HAZOP)分析是一种用于辨识工艺危险源,分析后果并提出对策的安全评价方法,在石油、化工等行业得到普遍认可和广泛应用。对国内正在建设的某液化天然气(LNG)接收站的基础设计进行HAZOP分析,以提高和保证其可靠性和安全性。文中概述了LNG接收站的工艺技术,并介绍了HAZOP分析方法的工作流程。将某LNG接收站的工艺流程划分7个节点,并以节点LNG储罐工艺系统为例,通过HAZOP分析识别了LNG储罐非正常操作条件下出现的不利后果,评估其工艺设计在安全与操作性方面的足够程度,提出了防止或减小危害后果的建议。通过对LNG接收站工艺系统进行HAZOP分析,评价了接收站设计的安全与操作性,为LNG接收站工程的顺利实施提供了保障。  相似文献   

17.
孔令广  鲁毅 《化工学报》2015,66(Z2):418-424
增压-冷凝系统是LNG接收站的控制核心。介绍了增压-冷凝系统工艺流程,结合某LNG接收站运行过程中高压输送泵入口过滤器阻塞的情况分析了高压输送泵入口压力与过滤器压差间的变化规律以及在此情况下泵井放空管线配管对再冷凝器平稳运行的影响,对存在的问题提出了优化方案,从而保证增压-冷凝系统稳定运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号