首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 625 毫秒
1.
丙烯酸稀土改性亚微米重质碳酸钙的研究   总被引:5,自引:0,他引:5  
张青  黄传荣  毕舒  李鸿 《广东化工》2005,32(10):23-25
采用实验室合成的丙烯酸稀土化合物RE-C为偶联剂对亚微米重质碳酸钙进行表面改性.采用IR、XRD、TEM等手段对超细改性重质碳酸钙进行分析和测试,结果表明此方法改性的亚微米重质碳酸钙减少了团聚,具有很好的分散性,表现了良好的填充性能.  相似文献   

2.
运用傅立叶变换红外光谱仪、X射线光电子能谱测定仪等检测手段,对比研究了在机械力、热、化学等联合作用下,苯乙烯与重质碳酸钙表面作用后,改性重质碳酸钙的表面性质及其形成机理,认为改性后在重质碳酸钙表面与苯乙烯聚合生成的聚苯乙烯之间形成C?O?C键,重质碳酸钙表面除存在聚苯乙烯的接枝外,还包括聚苯乙烯的多层化学吸附和包敷,重质碳酸钙与苯乙烯之间主要发生了自由基聚合反应,初步确立了改性前后碳酸钙表面的键合状况.  相似文献   

3.
为了更好地改善重质碳酸钙粉体的分散性、流动性以及提高其与树脂材料的融合性,将聚乙二醇-300(PEG-300)、十二烷基硫酸钠(SDS)和硬脂酸钠进行复合配比,制成水性复合改性剂。对重质碳酸钙进行干法表面改性,并对改性前后粉体的吸油值、沉降体积以及表面形貌进行测试和表征。将改性后的重质碳酸钙以质量分数25%,30%,35%和40%添加到聚丙烯(PP)材料中,制成PP/重质碳酸钙复合材料,测试其力学性能、热稳定性和断面微观形貌。研究结果表明,PEG-300,SDS和硬脂酸钠的质量比为6∶2∶2时,表面改性效果最佳,重质碳酸钙粉体的吸油值从32.7 mL/100 g降至15.5 mL/100 g,沉降体积从4.1 mL/g降至1.0 mL/g。水性复合改性重质碳酸钙粒径小、分散性更高,复合材料的结晶性能更好。水性复合改性剂的活化性能及其复合材料的力学性能均优于对照品硬脂酸;随着重质碳酸钙粉体含量的增加,PP/重质碳酸钙复合材料的力学性能先增大后减小,质量分数为30%时力学性能最佳。弯曲强度达到45.75 MPa,拉伸强度达到32.58 MPa。  相似文献   

4.
重质碳酸钙在线表面改性对留着率的影响   总被引:5,自引:0,他引:5  
研究的目的是在对造纸工艺不作重大改变的条件下,用助留剂阳离子淀粉对重质碳酸钙进行在线表面改性,该方法改性的重质碳酸钙能提高其在纤维中的留着率。实验发现,用阳离子淀粉对重质碳酸钙在线进行表面改性,对提高其留着率来说是相当经济的选择。  相似文献   

5.
张青  黄传荣  毕舒 《塑料工业》2006,34(Z1):118-120
采用实验室合成的三种改性剂对亚微米重质碳酸钙进行表面改性。并采用TEM、粒径分析、IR、Zeta电位测定、SEM等几种分析测试方法,对亚微米重质碳酸钙及其填充PP塑料进行了表征。结果表明,经改性的亚微米重质碳酸钙粒度减小,比表面积增大,改性剂在碳酸钙的表面形成了化学吸附。经不同改性剂改性的碳酸钙的Zeta电位不同。提高了重钙粉体作为填料的功能性。  相似文献   

6.
采用新型改性剂和传统改性剂对两种重质碳酸钙进行干法表面有机改性,探究了改性剂种类和改性剂用量对样品吸油值、活化指数、油相分散稳定性和水接触角的影响,确定了改性剂的优化用量,采用傅里叶变换红外光谱仪(FT-IR)、热重分析(TG)探究重质碳酸钙改性机理。结果表明:改性剂JST-9001(聚氧乙烯醚型复合改性剂)、JST-9003(聚氧乙烯醚型复合改性剂)、硬脂酸和铝酸酯F-2的改性效果更好,尤其两种新型改性剂JST-9001和JST-9003在低改性剂用量下(质量分数为0.5%)可获得更加优异的表面改性效果;优化用量下JST-9001和JST-9003改性剂分子中的亲水基与重质碳酸钙表面的—OH发生键合作用,改性剂分子层包覆于重质碳酸钙颗粒表面。  相似文献   

7.
戴美英 《橡胶工业》2001,48(11):663-666
研究了改性聚丁二烯在超细重质碳酸钙表面活化中的应用效果。试验结果表明,经改性聚丁二烯改性的超细重质碳酸钙填充SBR胶料的硫化速度明显加快,硫化胶的拉伸强度、定伸应力和撕裂强度提高1倍以上,耐屈挠龟裂性能提高3~5倍,在改性聚异戊二烯、改性聚丁二烯、钛铝偶联剂,钛酸酯TM-S和TM-38S中以改性聚丁二烯对超细重质碳酸钙的改性效果最好。当改性聚丁二烯的质量分数为0.02~0.03时,改性超细重质碳酸钙填充SBR胶料的各项性能最佳。  相似文献   

8.
选用硬脂酸钠、硅烷偶联剂及钛酸酯偶联剂对超细重质碳酸钙通过湿法进行接枝改性,采用傅里叶变换红外光谱、热失重分析仪和粒径分析对超细重质碳酸钙进行了表征。研究了3种改性超细重质碳酸钙对室温硫化硅橡胶流变性能及力学性能的影响。结果表明,改性后的超细重质碳酸钙能够很好地在硅橡胶中进行分散,经硅烷偶联剂改性的超细重质碳酸钙填充的硅橡胶呈现出了较佳的力学性能。  相似文献   

9.
本文研究了表面改性剂配方、用量、改性时间等对粉石英/重质碳酸钙复合填料表面改性效果的影响,试验得到最佳配方为复合填料:硅烷偶联剂:硬脂酸=100:0.5:1,并对表面改性剂与粉石英/重质碳酸钙复合填料表面的作用机理进行了探讨。  相似文献   

10.
在粒径为45 μm重质碳酸钙的浆料中加入硬脂酸,利用研磨改性法,在研磨粉碎的同时制备了改性碳酸钙浆料,烘干粉碎后再对碳酸钙干粉进行改性。利用激光粒度分析等手段分别对碳酸钙干粉的粒度、表面活化度、吸油值、白度做了研究。结果发现,常温下可以实现重质碳酸钙研磨改性一体化工艺。研磨后碳酸钙颗粒的粒径由45 μm降至2 μm。随着硬脂酸的添加量逐渐增加,重质碳酸钙的活化度增加,吸油值下降。当硬脂酸的添加量增至2%(质量分数)后,重质碳酸钙的活化度超过98%,吸油值降至0.267 g/g。重质碳酸钙研磨改性一体化工艺有利于降低重质碳酸钙的生产成本,增加产品的竞争力。  相似文献   

11.
重质CaCO3的表面改性及在PVC制品中的应用   总被引:1,自引:0,他引:1  
介绍了重质CaCO3表面改性的方法——表面化学改性和机械力化学改性,比较了常用的表面改性剂——硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂,还介绍了重质CaCO3在PVC制品中的应用。  相似文献   

12.
改性超细重质碳酸钙在硬质PVC中的应用   总被引:1,自引:0,他引:1  
对超细重质CaCO3进行了湿法改性和复合改性,采用红外光谱图对改性后的超细重质CaCO3进行了表征,采用SEM观察了其在PVC基体中的分散情况及试样的冲击断面,测试了其对试样力学性能的影响。结果表明:对超细重质CaCO3进行表面改性后,铝酸酯接枝到了超细重质CaCO3表面,提高了超细重质CaCO3在PVC中的分散性,试样冲击断面存在着大量牵伸结构和拉丝现象,因而提高了试样的拉伸强度和冲击强度(当超细重质CaCO3用量为5份时拉伸强度最高,当超细重质CaCO.用量为15份时冲击强度最高),且复合改性比湿法改性的效果好。  相似文献   

13.
氨基酸表面改性纳米碳酸钙表面性能研究   总被引:1,自引:1,他引:0  
主要通过在纳米碳酸钙-乙醇悬浮液中加入一定量的DL-α-丙氨酸的方法,在纳米碳酸钙表面引入羧基、氨基等活性基团对纳米碳酸钙进行表面改性,并用SEM、FTIR、XRD和TG等手段对氨基酸表面改性纳米碳酸钙的改性机理进行研究。结果表明:氨基酸是以化学键合的方式接枝到纳米碳酸钙表面,改性后的纳米碳酸钙分散良好,晶面间距增大。  相似文献   

14.
钛酸酯偶联剂对碳酸钙表面改性的研究   总被引:2,自引:0,他引:2  
利用钛酸酯偶联剂对轻质碳酸钙进行表面改性,测定了改性前后碳酸钙粉体的活化度、沉降体积、黏度,并用红外光谱(IR)对改性粉体进行了表征。结果表明:改性后的碳酸钙粉体的活化度在有机介质中的分散性得到了提高,钛酸酯偶联剂用量为2%时产品的活化度可以达到95%。改性剂与碳酸钙很好地结合,提高了碳酸钙粉体作为填料的功能性。  相似文献   

15.
铝锆酸酯偶联剂对超微碳酸钙表面性能的影响   总被引:5,自引:0,他引:5  
用铝锆酸酯偶联剂对超微碳酸钙粉体进行表面改性。讨论了改性前后超微碳酸钙的润湿性、沉降体积、糊粘度、吸油率等表面性质的变化。结果表明:改性的超微碳酸钙与水的接触角增大,能很好地分散在有机介质中,糊粘度减小,吸油率减小,适合用于塑料和橡胶。  相似文献   

16.
稀土偶联剂对碳酸钙表面改性的研究   总被引:5,自引:0,他引:5  
采用硬脂酸稀土对碳酸钙进行改性,并对改性产品进行了表征。硬脂酸稀土湿法改性碳酸钙的最佳条件是:硬脂酸稀土用量1%,改性温度90℃,改性时间40min,搅拌速度1000r/min。改性结果表明,碳酸钙由亲水疏油变成了亲油疏水;通过FTIR分析表明,硬脂酸稀土与碳酸钙以化学键结合。  相似文献   

17.
碳酸钙表面改性研究进展   总被引:2,自引:0,他引:2  
介绍了碳酸钙粉体表面改性的方法——局部反应改性、表面包覆改性、高能表面改性及机械化学改性,对碳酸钙粉体表面改性的发展前景进行了展望。  相似文献   

18.
硬脂酸改性碳酸钙的效果表征与改性机理初探   总被引:5,自引:0,他引:5  
介绍了吸油率法直接表征碳酸钙改性效果的方法。与钛酸酯偶联剂相比,硬脂酸改性碳酸钙的用量高于前者。硬脂酸改性处理的碳酸钙经三氯甲烷萃取后,改性效果基本不变,这一结果初步表明硬脂酸与碳酸钙之问的作用属于化学结合而非物理吸附。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号