首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
以FeCl_36H_2O、NH_4H_2PO_4、CH_3COOLi等为原料,通过原位聚合物限制法制备出了具有核-壳结构的LiFePO4/C纳水材料,利用XRD、HRTEM和TG-DSC等分析测试手段对材料的组成、形貌和热稳定进行表征。结果表明,LiFePO_4/C纳米材料是由20~40 nm的LiFePO4核和1~2 nm的炭壳组成。LiFePO_4/C纳米材料的热分解机理为1维随机成核,热分解动力学公式为da/dT=(A/β)exp(-E_a/RT)(1-a),动力学参数为lgA=10.386 min~(-1),E_a=1 38.849 kJ·mol~(-1)  相似文献   

2.
采用改进型原位限制聚合法制备具有核-壳结构的纳米LiFePO_4/C颗粒.。并通过XRD,HRTEM,电化学工作站等测试手段研究了所制备粉体的相组成,微观结构和电化学性能。XRD结果表明所制备的LiFePO4/C具有晶型完整的橄榄行结构,壳层炭为作晶。HRTEM照片显示所制备的LiFePO4/C粒径在18.2~54.5 nm之间,炭层均匀包覆在LiFePO4颗粒外表面,厚度在2~10nm之间。700℃合成的LiFePO_4/C核-壳材料的首次放电容量为142 mAh/g,经过40次充放电循环后,容量保持在132 mAh/g,容量保持率在93.0%。其充放电容量受电子导电、锂离子扩散速率的共同影响。  相似文献   

3.
爆轰法制备碳包覆铁镍合金纳米颗粒及其表征   总被引:2,自引:0,他引:2  
对掺杂硝酸铁和硝酸镍复合炸药前驱体,采用爆轰法合成碳包覆铁镍合金纳米颗粒。通过XRD,TEM,XRF,VSM等方法对合成的碳包覆合金纳米颗粒的形貌特征、结构组成及磁性行为进行了分析表征。结果表明,通过有效调整前驱体中金属源材料比例和碳材料组成,可爆轰合成较为完美的核壳结构碳包覆铁镍纳米颗粒,所得球形的纳米颗粒尺寸主要分布在10~60nm范围内且分散性较好,组成核主要由不同比例的铁镍元素构成,外壳层主要由石墨碳构成;由室温下磁性分析可知,该纳米颗粒表现出良好的超顺磁性。  相似文献   

4.
采用微乳液法成功合成出以磁性铁氧体(NiFe_2O_4)为内核,以氧化硅(SiO_2)为壳层的纳米颗粒。NiFe_2O_4/SiO_2核壳结构纳米复合材料的形成过程是:将合成出的NiFe_2O_4纳米颗粒均匀分散正硅酸乙酯(TEOS)溶液中,然后对TEOS进行水解并在NiFe_2O_4纳米颗粒表面沉淀,将纳米颗粒分离出并进行后续热处理。通过XRD、IR、SEM、TEM等测试手段对纳米颗粒样品的显微组织结构进行了相应分析和观察。研究发现,纳米颗粒具有NiFe_2O_4/SiO_2核壳结构,其晶粒的平均直径大约为40 nm。采用振动样晶磁强计测试样品磁性能可发现纳米颗粒表现出典型的超顺磁性,其饱和磁化强度为12.97 emu·g~(-1)  相似文献   

5.
以纤维素为炭前躯体,硝酸镍为金属源,采用还原炭化法制备出碳包覆Ni纳米颗粒(Ni@C)。进一步采用原位聚合法合成出Ni@C/聚苯胺(PANI)复合材料。TEM分析表明:Ni@C粒度分布均匀,呈核壳结构。采用IR光谱、SEM、XRD对复合材料和形态和结构进行分析;考察了Ni@C的含量对Ni@C/PANI复合材料电导率的影响。采用波导法在8.2-12.4 GHz波段范围对Ni@C和Ni@C/PANI复合材料进行电磁参数进行测试分析,复合材料的电损耗角正切值可达到0.65,磁损耗角正切值可达0.15,所制备Ni@C/PANI具有较高的电磁损耗角正切值,结果表明其吸波性能较好。  相似文献   

6.
利用化学法使化合物NiCl2在室温和氩气气氛中被NaBH4溶液还原,制备出具有纳米尺度的Ni颗粒,并在其表面包覆一层锰氧化物膜,从而制备出具有核/壳结构的铁磁/反铁磁颗粒。在Ni颗粒的合成中加入了分散剂聚丙烯酸(PAA)以避免Ni颗粒团聚;应用热处理手段,对核壳颗粒进行改性。分别通过XRD、TEM、SEM测量手段,对它们进行结构分析,并对这种铁磁/反铁磁的核壳结构样品进行了磁性研究。  相似文献   

7.
在室温下通过界面法合成硒化银-聚苯胺纳米复合颗粒。粉末X-射线衍射分析与红外分析证实了样品的相组成,透射电子显微镜观察表明复合颗粒为核壳结构:衬度较浅的聚苯胺为壳而衬度较深的硒化银为核。对硒化银-聚苯胺纳米核壳结构的形成机理做了探讨。所得粉末经冷压成型后测试其热电性能,常温下样品的电导率和Seebeck系数分别为5.5S·m-1和179μV·K-1。  相似文献   

8.
本文成功制备出以CuSe为核心、ZnSe为壳层,具有核壳结构的CuSe/ZnSe纳米粒子。首先采用回流冷凝法制备出CuSe纳米粒子(NPs)。然后,采用一种简单、快速的光化学方法即紫外光辐照法,室温下在CuSe NPs外包覆ZnSe壳层,最终得到CuSe/ZnSe核壳结构纳米粒子。利用X射线衍射(XRD)、能量色散谱仪(EDS)、透射电镜(TEM)、高分辨透射电镜(HRTEM)和光致发光光谱(PL)对合成的CuSe/ZnSe核壳NPs进行了表征。结果分析表明,合成的CuSe纳米粒子具有六方相结构,粒径平均大小在12 nm。制备出的CuSe/ZnSe纳米粒子的核壳结构清晰,生长的ZnSe壳层为立方闪锌矿结构,粒径大小约为15~45 nm。通过ZnSe壳层的包覆使CuSe在475 nm处产生蓝光发射,同时荧光强度显著增强。  相似文献   

9.
贵金属核壳纳米粒子最新研究进展   总被引:3,自引:1,他引:2  
贵金属核壳纳米粒子具有独特的光、电和催化性质,使其在材料科学、生物物理、分子电子学以及基于表面增强效应的荧光工程学领域具有极其广泛的应用前景.本文综述了贵金属核壳纳米粒子的制备方法及应用,并对贵金属核壳材料的发展进行了展望.  相似文献   

10.
化学镀制备玄武岩纤维/镍核壳结构及其表征   总被引:3,自引:0,他引:3  
采用简单易行的化学镀方法,在较低的温度下制备出一种新型的玄武岩纤维/镍核壳结构。SEM、XRD、XPS分析结果表明,金属Ni颗粒吸附在玄武岩纤维表面,形成了一层均匀连续的镍壳层。通过对试验结果进行分析,得出了制备玄武岩纤维/镍核壳结构的最佳温度和pH值分别为50℃和10.0。文中对化学镀核壳结构的形成机理也进行了初步分析。  相似文献   

11.
提出一种简便易行的方法制备核壳型FeBP@SiO2纳米粒子,该方法利用化学还原和溶胶凝胶相结合,实现复合粒子的核壳结构可控。通过改变SiO2壳厚度,研究了壳层厚度对吸波性能的影响,并对微波吸收机制进行分析和解释。结果表明,随着SiO2壳层厚度的增加,粒子微波吸收能力先增大后减小。当SiO2壳层厚度为38 nm时,FeBP@SiO2样品具有最强的微波吸收性能,在吸收涂层厚度为2.19 mm下反射损耗获得较好的吸收性能(-52.66 dB),这种增强的微波吸收性能主要来自新增磁-介电界面,从而提高了材料的阻抗匹配以及介电损耗的能力,通过设计复合粒子的核壳结构,可以实现复合吸波剂的性能调控,因此本研究为设计下一代新型复合微波吸收材料提供了重要参考。  相似文献   

12.
在纳米SiC存在的情况下,以苯胺单体为原料,过硫酸铵为氧化剂,采用化学氧化聚合法制备了聚苯胺/纳米SiC复合物。采用SEM、XRD、UV-vis等方法对产物进行形貌观察和结构表征。将涂层中分别含有聚苯胺和聚苯胺/纳米SiC复合物填料成的碳钢片浸泡于3.5%NaCl溶液中,通过开路电位、极化曲线和电化学阻抗谱来评价涂层的防腐蚀性能。结果表明,涂层中含有聚苯胺/纳米SiC复合物填料成分的碳钢片抗腐蚀能力强于含聚苯胺的碳钢片,腐蚀电位最高,腐蚀电流密度最小;而裸钢片腐蚀电位最小,腐蚀电流密度最大。  相似文献   

13.
直流电弧等离子体制备NiO包覆Ni纳米颗粒   总被引:2,自引:0,他引:2  
采用直流电弧等离子体技术制备NiO包覆Ni纳米颗粒,对初产物经过钝化处理得到有氧化膜保护的NiO包覆Ni纳米颗粒.采用高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)、透射电子显微镜(TEM)、选区电子衍射(SAED)、热重和差示扫描量热分析仪(TGA/DSC)以及傅里叶变换红外光谱 (FTIR)等手段对试样的成分、表面组成、形貌、晶体结构、粒度、红外吸收性能和氧化特性进行了分析.结果表明:经过表面钝化处理的NiO包覆Ni纳米颗粒具有明显的核-壳结构,内核为纳米Ni,外壳为NiO氧化物;颗粒呈球形,粒度均匀,分散性良好,粒径分布在20~70 nm范围,平均粒径为44 nm,壳层氧化膜的厚度为5~8 nm;壳核结构可防止纳米Ni颗粒的进一步氧化和团聚,且使红外吸收峰发生蓝移.  相似文献   

14.
采用共沉淀法制备Fe<,3>O<,4>磁性纳米颗粒,并在此基础上采用柠檬酸钠还原HAuCl<,4>的方法制备Fe<,3>O<,4>@Au核壳纳米颗粒.通过透射电镜(TEM)、能量衍射光谱(EDS)、傅立叶变换红外光谱(FT-IR)、X-射线衍射仪(XRD)分别对产物的形貌、结构和组成等性质进行表征.结果表明:Au成功包裹在Fe<,3>O<,4>纳米颗粒表面,所制得的Fe<,3>O<,4>@Au核壳纳米颗粒在水中的分散性较好,粒径比较均匀,为(15±5)nm;且当Fe<,3>O<,4>和Au摩尔比为5:1时,制备的Fe<,3>O<,4>@Au核壳纳米颗粒的磁性较好.  相似文献   

15.
以硫酸亚铁、硝酸钴、硫酸镍、碳酸钠和石墨微球为主要原料,利用非均相沉淀工艺分别制备出水合氧化铁、碱式碳酸钴和碱式碳酸镍包裹石墨微球的前驱体复合微球;然后将前驱体复合微球于600℃热还原处理2 h,分别得到了钴铁、铁镍和钴镍磁性纳米合金颗粒层均匀包裹石墨微球的粉体材料.利用SEM,EDS,XRD对前驱体复合微球和核壳结构石墨/磁性纳米合金复合微球的形貌、成分、物相进行了表征,利用VSM对核壳结构石墨/磁性纳米合金复合微球的磁性能进行了研究.这些核壳结构复合微球的磁性合金颗粒层分别由晶粒为37.9 nm的Co0.5Fe0.5、38.5 nm的Fe0.5Ni0.5和38.2 nm的Co0.5Ni0.5组成,相应的矫顽力分别为36676,20972,16894A/m.  相似文献   

16.
通过水热法合成分散性良好的CdS纳米颗粒,并采用声化学法在颗粒外包覆TiO2壳层,获得的复合材料具有更好的光催化特性.讨论了水热反应温度保温时间与晶粒尺寸、结晶性之间的关系以及声化学制备过程中反应条件与陈化时间对壳层生长的影响.采用X射线衍射、透射电镜、漫反射光谱、光催化性能测试等手段表征CdS颗粒的尺寸、形貌及CdS/TiO2的结构与光催化特性.结果表明水热过程中,提高反应温度、保温时间有利于提高产物的结晶性.声化学合成CdS/TiO2复合材料过程中,超声作用能促进核壳结构的形成.提高前驱溶液的浓度,在获得CdS/TiO2核壳结构的同时会析出TiO2纳米粒子.在降解甲基橙的实验中,CdS/TiO2材料表现出比单组分材料更好的催化性能.  相似文献   

17.
采用化学镀工艺,制备了催化性能优良的Au核壳结构纳米催化剂,表面Au颗粒粒径约为16nm,结构致密,单分散程度较高。利用扫描电子显微镜(SEM)和紫外-可见分光光度计(UV-Vis),结合产H2量测试,研究了络合剂和还原剂的加入顺序对Au核壳结构纳米催化剂催化性能的影响。结果表明:先加络合剂所制备样品在亚甲基蓝脱色反应中表现出最高的反应速率和产氢量,具有最高的催化反应活性。较高的纳米Au颗粒粗糙度和Au负载量是其取得优良催化活性的原因。  相似文献   

18.
以磁性Fe3O4为核,在其表面负载SiO2,并用介孔TiO2 (mTiO2)进行包覆,用3-氨丙基三甲氧基硅烷对其改性,将纳米金颗粒均匀负载在介孔TiO2表面,制备出核壳型纳米Fe3O4@SiO2 @mTiO2 -Au复合材料。用透射电镜(TEM)、振动样品磁强计(VSM)、X射线光电子能谱分析(XPS)和X射线衍射分析(XRD)等对样品进行表征,确认了核壳结构的存在,尺寸约3 nm的纳米金负载在表面。催化活性测试结果表明,该材料对对硝基苯酚在25 min内降解率达83%,对铁氰酸钾在30 min内降解率达84%。  相似文献   

19.
一种制备核-壳纳米Ni/Al复合粉末的新方法   总被引:1,自引:0,他引:1  
在含氟离子的水溶液中,采用Al粉直接置换还原Ni盐的方法,实现了纳米Ni在Al粉表面上的快速化学沉积,制备出核-壳结构的Ni/Al复合粉末。探讨了反应的过程,利用粒度分析,SEM,XRD,BET,XPS等测试手段对复合粉末进行了微观测试和表征。结果表明:平均粒度为7.13μm的铝颗粒表面包覆着一层纳米Ni(其晶粒度为20.4nm),形成了壳层。  相似文献   

20.
采用喷雾干燥法制备核壳结构的Al2O3/YAG:Ce荧光粉,所得样品为立方Y3Al5O12结构,球形颗粒的粒径为1~8μm,显示出比共沉淀法高的内部量子效率。核壳结构的Al2O3/YAG:Ce荧光粉的形成机理为,起始悬浮液包含微米级的Al2O3和Y3+、Al3+、Ce3+等形成的聚阳离子,经过雾化形成小液滴,在溶剂挥发过程中,由于聚阳离子比微米级的Al2O3的迁移速度大,在颗粒间的毛细管力的作用下,自组装成为聚阳离子包裹微米级的Al2O3的核壳型结构,在850~1250℃时焙烧2 h,就得到了核壳型的荧光粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号