首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
In this article, a nondissipative equalization scheme is proposed to reduce the inconsistency of series connected lithium-ion batteries. An improved Buck-Boost equalization circuit is designed, in which the series connected batteries can form a circular energy loop, equalization speed is improved, and modularization is facilitated. This article use voltage and state of charge (SOC) together as equalization variables according to the characteristics of open-circuit voltage (OCV)-SOC curve of lithium-ion battery. The second-order RC equivalent circuit model and back propagation neural network are used to estimate the SOC of lithium-ion battery. Fuzzy logic control (FLC) is used to adjust the equalization current dynamically to reduce equalization time and improve efficiency. Simulation results show that the traditional Buck-Boost equalization circuit and the improved Buck-Boost equalization circuit are compared, and the equalization time of the latter is reduced by 34%. Compared with mean-difference algorithm, the equalization time of FLC is decreased by 49% and the energy efficiency is improved by 4.88% under static, charging and discharging conditions. In addition, the proposed equalization scheme reduces the maximum SOC deviation to 0.39%, effectively reducing the inconsistency of batteries.  相似文献   

2.
锂电池因具有比能量高、循环寿命长、对环境无污染等优点,在储能系统中已逐渐得到应用.准确估算锂电池的荷电状态(SOC)可防止电池过充、过放,保障电池安全、充分地使用.为了精确估算储能锂电池SOC,基于PNGV(partnership for a new generation of vehicles)电池等效模型,利用递推最小二乘法(RLS)对模型参数进行在线辨识和实时修正,增强了系统的适应性.结合安时法、开路电压法和PNGV模型,提出了一种实时在线修正SOC算法.根据实验数据,建立了仿真模型,以验算模型和SOC估算算法的精度.仿真结果表明,PNGV模型能真实地模拟电池特性,且能有效地提高SOC估算精度,适合长时间在线估算储能锂电池的SOC.  相似文献   

3.
Equations that describe the voltage variations with time of a rechargeable battery during charging and discharging were used to determine the component values of the equivalent circuit of nickel-cadmium batteries under different states of charge (SOC). The equivalent circuit of the battery was described as an ideal voltage source in series with a resistor and the parallel combination of a resistor and a capacitor. The battery model used different values of resistance and capacitance, in the parallel combination, during the different phases of the discharge-rest-charge-rest sequence. The results show that the series resistance is approximately constant with variations in the SOC while the resistor in the parallel RC circuit increases as the SOC decreases. For the discharge and charge phases the capacitor value increased and decreased, respectively, as the SOC decreased. The value of the resistor or capacitor in the parallel RC circuit is an indicator of the battery SOC.  相似文献   

4.
The technology deployed for lithium-ion battery state of charge (SOC) estimation is an important part of the design of electric vehicle battery management systems. Accurate SOC estimation can forestall excessive charging and discharging of lithium-ion batteries, thereby improving discharge efficiency and extending cycle life. In this study, the key lithium-ion battery SOC estimation technologies are summarized. First, the research status of lithium-ion battery modeling is introduced. Second, the main technologies and difficulties in model parameter identification for lithium-ion batteries are discussed. Third, the development status and advantages and disadvantages of SOC estimation methods are summarized. Finally, the current research problems and prospects for development trends are summarized.  相似文献   

5.
This article proposes an active balancer, which features bidirectional charge shuttling and adaptive equalization current control, to fast counterbalance the state of charge (SOC) of cells in a lithium-ion battery (LIB) string. The power circuit consists of certain bidirectional buck-boost converters to transfer energy among the different cells back and forth. Owing to the characterization of the open-circuit voltage (OCV) vs SOC in LIB being relatively smooth near the SOC middle range, the SOC-inspected balance strategy can achieve more precise and efficient equilibrium than the voltage-based control. Accordingly, a compensated OCV-based SOC estimation is put forward to take into account the discrepancy of SOC estimation. Besides, the varied-duty-cycle (VDC) and curve-fitting modulation (CFM) methods are devised herein to tackle the problems of slow equalization rate and low balance efficacy, which arise from the diminution in balancing current as the SOC difference between the cells decreases in the later duration of equalization especially. The proposed strategies have taken the battery nonlinear characteristic and circuit parameter nonideality into account and can adaptively modulate the duty cycle with the SOC difference to keep balancing current constant throughout the balancing cycle. Simulated and experimental results are given to demonstrate the feasibility and effectiveness of the same prototype constructed. Compared with the fixed duty cycle and the VDC methods, the proposed CFM has the best balancing efficiency of 81.4%, and the balance time is shortened by 27.1% and 18.6%, respectively.  相似文献   

6.
Equations that describe the voltage variations with time of rechargeable batteries during charging and discharging were used to determine the component values of the equivalent circuit of nickel-metal hydride batteries under different states of charge (SOC). The equivalent circuit of the battery was described as an ideal voltage source in series with a resistor and the parallel combination of a resistor and a capacitor. The battery model used different values of resistance and capacitance, in the parallel combination, during the different phases of the discharge-rest-charge-rest sequence. The results show that the resistances in the equivalent circuit are approximately constant with variations in the SOC. For the discharge and charge phases the capacitor value increased and decreased, respectively, as the SOC decreased. The value of the capacitor in the parallel RC circuit is an indicator of the battery SOC.  相似文献   

7.
The research of the real-time state of charge (SOC) estimation method for lithium-ion battery is developing towards the trend of model diversification and algorithm complexity. However, due to the limitation of computing ability in the actual battery management system, the traditional ampere-hour (Ah) method is still widely used. First, temperature, charge-discharge current, and battery aging are considered as the main factors, which affect the estimation accuracy of the Ah method under the condition that detection accuracy of the current sensor is determined. Second, the relationship between the SOC and battery open-circuit voltage at different temperatures is analyzed, which is used to modify the initial SOC. Third, the influence mechanism of main factors on the effect of the Ah method is analyzed, and proposes a capacity composite correction factor to reflect the influence of charge-discharge efficiency, coulomb efficiency, and battery aging comprehensively, and then update its value in real-time. Lastly, the adaptive improved Ah formula and the complete SOC estimation model is designed, and the estimation effect of this model is verified by comparing with other SOC estimation methods in the experiment of dynamic cycle test. The results show that the estimation error of the adaptive improved method is less than 2% under two comprehensive working conditions, while the error of the traditional method is 5% to 10%, and compared with an extended kalman filter algorithm, it also gets a better SOC estimation performance, which proves that this method is scientific and effective.  相似文献   

8.
Lithium ion cells, when cycled, exhibit a two‐stage degradation behavior characterized by a first linear stage and a second nonlinear stage where degradation is rapid. The multitude of degradation phenomena occurring in lithium ion batteries complicates the understanding of this two‐stage degradation behavior. In this work, a simple and intuitive model is presented to analyze the coupled effect of resistance growth and the shape of the state of charge (SOC)‐open circuit voltage (OCV) relationship in representing the complete degradation behavior. The model simulations demonstrate that a single resistance that increases linearly on cycling can capture the transition from slow to fast degradation, primarily due to the shape of the SOC‐OCV curve. Further, the model simulations indicate that the shape of the degradation curve depends strongly on the magnitude of current at the end of discharge of the cycling protocol. To verify these observations, specific experiments are designed with minimal capacity loss but with shrinking operating voltage ranges that result in shrinking operating OCV range. The results of the experiments validate the observations of model simulations. Further, long‐term cycling experiment with a commercial lithium ion cell shows that the operating OCV range shrinks substantially with aging and is a major reason for the observed accelerated degradation. The analysis of the present work provides significant insights towards developing simple semiempirical models suitable for battery life management in microcontrollers.  相似文献   

9.
Based on clonal selection theory, an improved immune evolutionary strategy is presented. Compared with conventional evolutionary strategy algorithm (CESA) and immune monoclonal strategy algorithm (IMSA), experimental results show that the proposed algorithm is of high efficiency and can effectively prevent premature convergence. A three-layer feed-forward neural network is presented to predict state-of-charge (SOC) of Ni–MH batteries. Initially, partial least square regression (PLSR) is used to select input variables. Then, five variables, battery terminal voltage, voltage derivative, voltage second derivative, discharge current and battery temperature, are selected as the inputs of NN. In order to overcome the weakness of BP algorithm, the new algorithm is adopted to train weights. Finally, under the state of dynamic power cycle, the predicted SOC and the actual SOC are compared to verify the proposed neural network with acceptable accuracy (5%).  相似文献   

10.
《Journal of power sources》2006,158(1):213-224
A detailed dynamic model incorporating geometric resolution of a molten carbonate fuel cell (MCFC) with dynamic simulation of physical and electrochemical processes in the stream-wise direction is presented. The model was developed using mass and momentum conservation, electrochemical and chemical reaction mechanisms, and heat-transfer. Results from the model are compared with data from an experimental MCFC unit. Furthermore, the model was applied to predict dynamic variations of voltage, current and temperature in an MCFC as it responds to varying load demands. The voltage was evaluated using two different approaches: one applying a model developed by Yuh and Selman [C.Y. Yuh, J.R. Selman, The polarization of molten carbonate fuel cell electrodes: I. Analysis of steady-state polarization data, J. Electrochem. Soc. 138 (1991) 3642–3648; C.Y. Yuh, J.R. Selman, The polarization of molten carbonate fuel cell electrodes: II. Characterization by AC impedance and response to current interruption, J. Electrochem. Soc. 138 (1991) 3649–3655] and another applying simplified equations using average local temperatures and pressures. The results show that both models can be used to predict voltage and dynamic response characteristics of an MCFC and the model that uses the more detailed Yuh and Selman approach can predict those accurately and consistently for a variety of operating conditions.  相似文献   

11.
This paper introduces a state of charge (SOC) estimation algorithm that was implemented for an automotive lithium-ion battery system used in fuel-cell hybrid vehicles (FCHVs). The proposed online control strategy for the lithium-ion battery, based on the Ah current integration method and time-triggered controller area network (TTCAN), incorporates a signal filter and adaptive modifying concepts to estimate the Li2MnO4 battery SOC in a timely manner. To verify the effectiveness of the proposed control algorithm, road test experimentation was conducted with an FCHV using the proposed SOC estimation algorithm. It was confirmed that the control technique can be used to effectively manage the lithium-ion battery and conveniently estimate the SOC.  相似文献   

12.
在自主开发的锂离子电容器基础上,基于AVL-Cruise建立了48 V启停电源系统汽车模型。结合安时法、开路电压法和扩展卡尔曼滤波法,设计了器件荷电状态(state of charge,SOC)估计模块,实现在线SOC估计。在MATLAB/Simulink中建立基于模糊控制的能量管理模型,实现发动机启停、纯电动驱动起步、制动能量回收以及主动滑行等功能。最后,根据新欧洲驾驶循环(New European Driving Cycle,NEDC)工况对电源系统的SOC以及整车油耗进行评估。研究结果证明了该系统可实现误差10%以内的SOC估计,同时基于锂离子电容器的48 V启停电源系统具有很好燃油经济性。  相似文献   

13.
Support vector based battery state of charge estimator   总被引:1,自引:0,他引:1  
《Journal of power sources》2005,141(2):351-358
This paper investigates the use of a support vector machine (SVM) to estimate the state-of-charge (SOC) of a large-scale lithium-ion-polymer (LiP) battery pack. The SOC of a battery cannot be measured directly and must be estimated from measurable battery parameters such as current and voltage. The coulomb counting SOC estimator has been used in many applications but it has many drawbacks [S. Piller, M. Perrin, Methods for state-of-charge determination and their application, J. Power Sources 96 (2001) 113–120]. The proposed SVM based solution not only removes the drawbacks of the coulomb counting SOC estimator but also produces accurate SOC estimates, using industry standard US06 [V.H. Johnson, A.A. Pesaran, T. Sack, Temperature-dependent battery models for high-power lithium-ion batteries, in: Presented at the 17th Annual Electric Vehicle Symposium Montreal, Canada, October 15–18, 2000. The paper is downloadable at website http://www.nrel.gov/docs/fy01osti/28716.pdf] aggressive driving cycle test procedures. The proposed SOC estimator extracts support vectors from a battery operation history then uses only these support vectors to estimate SOC, resulting in minimal computation load and suitable for real-time embedded system applications.  相似文献   

14.
This paper proposes an accurate and easy-to-implement emulator which is able to track the characteristic curve of a Proton Exchange Membrane Fuel Cell (PEMFC). Such an emulator is based on a low-cost microcontroller , isolated voltage and current sensors. The proposed emulator takes advantages of the flexibility and robustness. The sensed voltage and current provide to the microcontroller the accurate information to compute the output voltage of an actual PEMFC. The obtained voltage is sent to a digital-to-analog converter in order to command the continuous control voltage. The simplified electrochemistry model is presented and validated through simulation and then corroborated via experimentation. The proposed emulator is subjected to two load conditions: fixed load resistor and power electronic converter. The employed power converter is controlled by a variable duty cycle which is adjusted to a value at which the power extracted from the emulator is maximum.  相似文献   

15.
This paper studies the transient response of the output voltages of a Ballard-Mark-V 35-cell 5 kW proton exchange membrane fuel cell (PEMFC) stack with power conversion for applications in autonomous underwater vehicles (AUVs) under load changes. Four types of pulse-width modulated (PWM) dc-dc power converters are employed to connect to the studied fuel cell in series for converting the unregulated fuel cell stack voltage into the desired voltage levels. The fuel cell model in this paper consists of the double-layer charging effect, gases diffusion in the electrodes, and the thermodynamic characteristic; PWM dc-dc converters are assumed to operate in continuous-conduction mode with a voltage-mode control compensator. The models of the study's fuel cell and PWM dc-dc converters have been implemented in a Matlab/SIMULINKTM environment. The results show that the output voltages of the studied PEMFC connected with PWM dc-dc converters during a load change are stable. Moreover, the model can predict the transient response of hydrogen/oxygen out flow rates and cathode and anode channel temperatures/pressures under sudden change in load current.  相似文献   

16.
Aiming at solving the problem of poor battery cell consistency caused by excessive decay of cell capacity or increased internal resistance during the operation of lithium-ion battery packs for vehicles, the paper proposes an active equalization control with 12-V power supply as an equalization energy source, which achieves efficient energy replenishment of individual cells with low power. The electrochemical-thermal coupling model of lithium-ion battery is built, and the order reduction of large-scale system theory ensures that the model had higher accuracy and lower amount of calculation, which is suitable for vehicle battery management system (BMS). Then the extended Kalman filter algorithm is used to calculate the real-time state of charge (SOC) of each cell and set as an equalization variable. The equalization simulation circuit is built with MATLAB/Simulink, the experimental platform of active equalization system for battery packs is constructed, and the battery packs are tested for equalization in static state. The simulation and experimental results show that the proposed active equalization control strategy can rapidly improve the voltage inconsistency between single cells, and the energy transfer efficiency can reach about 85% during the equalization process.  相似文献   

17.
18.
电渗过程中的电荷积累现象是电极和土体界面间存在电压降的主要原因,将电荷积累区域视为一特殊电容器,模拟了土与电极界面间的电容效应,推导了界面电容与土体电阻串联后土体中的电压降、电容间距和孔隙水压力,通过圆柱形电极和电极板试验,验证了界面电容假设的合理性,同时指出随着电渗的进行,电荷积累增多,电压降增大,且圆柱形电极形成的电容大于电极板形成的电容。  相似文献   

19.
The electrical dynamic characteristics of a lithium-ion battery have been simulated by an equivalent circuit, which is derived from the measured impedance. The transient voltage response to the various kinds of applied current waves such as single pulse, single rectangular, triangle, and sawtooth waves is experimentally examined and calculated by using the numerical Laplace transform with the equivalent circuit. The experimental and calculated results are compared and discussed, focusing on the range of current where the linear relationship is valid. Changing the time range, the state of charge (SOC) and the battery temperature as parameters, their influence on the linear range of the applied current has been investigated.  相似文献   

20.
Performance of lithium-ion pouch cell cannot be evaluated only by its external characteristics, such as the surface temperature and potential, as the internal electrochemical and thermal properties of the cell can significantly affect its performance. However, it is difficult to observe the internal thermal and electrochemical characteristics by means of experiment. Within this study a layered three-dimensional electrochemical-thermal coupled model of a lithium-ion pouch cell is proposed, then it is verified by experimental method at several discharge rates. According to this model, the spatial distribution of temperature field and heat generation rate are analyzed at four discharge rates, a fitted surface equation is presented for this battery to roughly predict the heat generation rate according to the discharge rate and depth of discharge. Afterward, several representative electrochemical properties (electric potential, electrolyte concentration, electrode current density, and mass transfer process) are investigated from the spatial perspective, which reveals the transfer process of lithium-ion and current clearly inside the battery. It is also concluded that there exists a gradient both at the plane and thickness of the electrode, and the gradient in the thickness direction is larger than that in the plane. A large gradient in temperature, lithium-ion concentration, electrode potential and current density distribution are located at the connection between tabs and electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号