首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the effects of precipitation phases on the hydrogen embrittlement (HE) sensitivity of Inconel 718 by means of tensile tests. Hydrogen was charged into the test specimens via a cathodic charging process prior to the tensile tests. Various heat treatments were applied to conventionally aged specimens to fabricate specimens with different precipitation conditions for the γ″ phase and the δ phase. For each precipitation condition, we fabricated two specimens, one of which was charged with hydrogen before the tensile test. All specimens were tensioned under identical tensile conditions. The percent loss of the reduction of area (RA) caused by pre-charged hydrogen was used to assess HE sensitivity. Both the δ phase and the γ″ phase were found to play significant roles in altering HE sensitivity of Inconel 718. When these phases were totally dissolved, the HE sensitivity of the alloy was very low. The percent loss of RA decreased along with a decrease in the fractional volume of γ″. The δ-free aged alloy had greatly enhanced HE resistance, the same level as that of conventionally annealed alloy, and its strength was equal to that of the conventionally aged alloy. Fracture origins noted on the specimens were located on the surface layers and displayed brittle cleavage when pre-charged hydrogen was utilized. Local transgranular cleavages initiated from the δ/matrix were also observed in conventionally aged specimens, where there was a presence of pre-charged hydrogen. Therefore, the δ phase was considered to promote HE by initializing micro-cracks from δ/matrix interfaces. Since the δ-free aged alloy has both good strength and good ductility, we propose that it is advantageous for fabricating some hydrogen-containing parts.  相似文献   

2.
The effect of δ phase on the hydrogen embrittlement (HE) sensitivity of Inconel 718 was investigated by conducting notch tensile tests. Notch tensile specimens with various precipitation morphologies of δ phase were prepared with different heat treatments, and hydrogen was charged into the tensile specimens before tensile tests via a cathodic charging process. The loss of notch tensile strength (NTS) due to the charged hydrogen was used to evaluate the hydrogen embrittlement sensitivity. The results show that δ phase has deleterious effect on NTSs, and the fracture of hydrogen-charged specimens initiated near the notch surfaces. The loss of NTS caused by precharged hydrogen can be greatly decreased by dissolving δ phase. δ-free Inconel 718 alloy is proposed for the applications in hydrogen environments.  相似文献   

3.
The effect of δ phase on the hydrogen embrittlement (HE) sensitivity of Inconel 718 was investigated by conducting notch tensile tests. Notch tensile specimens with various precipitation morphologies of δ phase were prepared with different heat treatments, and hydrogen was charged into the tensile specimens before tensile tests via a cathodic charging process. The loss of notch tensile strength (NTS) due to the charged hydrogen was used to evaluate the hydrogen embrittlement sensitivity. The results show that δ phase has deleterious effect on NTSs, and the fracture of hydrogen-charged specimens initiated near the notch surfaces. The loss of NTS caused by precharged hydrogen can be greatly decreased by dissolving δ phase. δ-free Inconel 718 alloy is proposed for the applications in hydrogen environments.  相似文献   

4.
对高含H2S/CO2酸性油气田封隔器材料-Inconel718镍基合金进行固溶处理和时效处理,研究不同热处理工艺条件下合金的组织、力学性能、耐蚀性能之间的关系。结果表明:随着固溶温度的升高,δ相不断溶入基体。材料经时效处理后析出第二相γ″相,硬度和强度明显高于固溶处理的样品,1000℃固溶+720℃×8h→50℃/h620℃×8h时效处理的样品硬度和强度达到最大值。高温高压H2S/CO2介质中挂片实验的结果表明,不同热处理的Inconel718合金均具有良好的耐腐蚀性能,经固溶处理的材料耐腐蚀性略优于经固溶+时效处理的材料。高温高压H2S/CO2应力腐蚀实验的结果表明,Inconel718没有发生应力腐蚀开裂迹象。综合考虑耐蚀性能和力学性能,确定Inconel718合金的最佳热处理工艺为:1000℃固溶1h+720℃×8h→50℃/h620℃×8h时效。  相似文献   

5.
The effects of alloy 718 microstructure on hydrogen embrittlement susceptibility and tensile fracture mode were assessed through slow strain rate tensile testing and fracture surface analysis. Alloy 718 was annealed and aged to produce microstructures with variations in grain size and amount of grain boundary precipitates. Furthermore, the different ageing conditions likely resulted in differences in volume fractions and sizes of γ′ and γ′′ precipitates. The extent of grain boundary precipitation had the strongest effect on hydrogen embrittlement susceptibility, while grain size did not have any significant effect. Hydrogen embrittlement susceptibility was also correlated with differences in strength level, which was primarily controlled by the γ′ and γ′′ precipitate populations.  相似文献   

6.
《Materials Science & Technology》2013,29(11-12):1309-1313
Abstract

Inconel 718 is a nickel based alloy used extensively in the aerospace industry, having good service capabilities, in terms of strength and fatigue resistance, at high temperatures. Inconel 718, in the form of sheet, has the capability of being shaped using gas pressure forming techniques similar to those used for a number of aluminium and titanium based alloys. An extensive research programme has been carried out to investigate the high temperature formability of this alloy. This has involved both uniaxial tensile testing to determine such parameters as flow stress and strain rate sensitivity, and microstructural examination to investigate grain stability under both static heating and following deformation. The forming characteristics of the material have been correlated with the δ phase solvus temperature determined using SEM techniques. Optimum forming temperatures and strain rates are discussed.  相似文献   

7.
Hydrogen embrittlement of Inconel 718 alloy was investigated. Multi-scale observation technique were employed, comprising slow strain rate tensile tests, scanning electron microscopy and transmission electron microscopy analysis. The results demonstrate that hydrogen charging deteriorates mechanical properties of the alloy. Inconel 718 alloy shows partial Portevin-Le Chatelier(PLC) effect at room temperature when hydrogen charging current density is 220 mA cm~(-2) and 590 mA cm~(-2). Moreover, plastic deformation features with dislocation cells are detected in hydrogen-induced brittle zone. Thus, it is concluded that dragging effect of hydrogen atoms on dislocations contributes to PLC effect.  相似文献   

8.
γ″Precipitate in Inconel 718   总被引:2,自引:0,他引:2  
The γ"precipitate in Inconel 718 Ni-base superalloy has been investigated using TEM. Based on a calculation of diffraction pattern. the orientation relations between precipitates and matrix are given in detail. The influence of solution temperature on growth of γ" precipitates was investigated. and a γ" precipitate free area near δ phase was found. The coarsening behaviour of γ" precipitates during short time aging is discussed  相似文献   

9.
The effects of pre- and post-weld heat treatments on the butt joint quality of 3.18-mm thick Inconel 718 alloy were studied using a 4 kW continuous wave Nd:YAG laser system and 0.89-mm filler wire with the composition of the parent metal. Two pre-weld conditions, i.e., solution treated, or solution treated and aged, were investigated. The welds were then characterized in the as-welded condition and after two post-weld heat treatments: (i) aged, or (ii) solution treated and aged. The welding quality was evaluated in terms of joint geometries, defects, microstructure, hardness, and tensile properties. HAZ liquation cracking is frequently observed in the laser welded Inconel 718 alloy. Inconel 718 alloy can be welded in pre-weld solution treated, or solution treated and aged conditions using high power Nd:YAG laser. Post-weld aging treatment is enough to strengthen the welds and thus post-weld solution treatment is not necessary for strength recovery.  相似文献   

10.
采用LBW+SPF组合技术制造Inconel718合金多层夹芯板结构.为了增强多层夹芯板结构使用时的安全性,研究其热处理技术.结果表明:Inconel718合金在焊接过程产生了Nb含量较高的Laves沉淀相;超塑成形后焊缝中的Nb元素的偏析问题得了缓解;经980℃固溶30min处理后,焊缝中的δ相完全回溶母体γ相,焊缝...  相似文献   

11.
研究了未充氢和热充氢沉淀强化奥氏体合金的拉伸断裂行为,分析了其氢脆敏感性与拉伸断裂行为间的联系,研究了氢对合金局部塑性变形及微裂纹形核的影响。结果表明:氢使沉淀强化合金由单一的韧窝断裂转变为韧窝断裂、沿晶断裂和滑移带开裂的混合断裂方式。其原因是:一方面,氢促进位错平面化滑移趋势、加剧局部塑性变形;另一方面,滑移带被晶界、孪晶界以及不同取向的滑移带所阻碍,引起了位错塞积和氢聚集。  相似文献   

12.
Abstract

A nickel alloy of a composition similar to that of the nickel based superalloy Inconel alloy 718 (IN718) was produced with the electron beam melting (EBM) process developed by Arcam AB. The microstructures of the as processed and heat treated material are similar to that of conventionally produced IN718, except that the EBM material showed some porosity and the δ phase did not dissolve during the solution heat treatment because the temperature of 1000°C apparently was too low. Mechanical testing of the layer structured material, parallel and perpendicular to the built layers, revealed sufficient strength in both directions. However, it showed only limited elongation when tested perpendicular to the built layers due to local agglomerations of pores. Otherwise, data for the hardness, Young’s modulus, 0·2% yield tensile strength and ultimate tensile strength match those recommended for IN718.  相似文献   

13.
The hot working characteristics of δ phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 °C and strain rate of 0.005 s? 1, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like δ phase and the precipitation of spherical δ phase particles coexisted during the deformation, and the content of δ phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like δ phase was spheroidized and transferred to spherical δ phase particles. In the center with largest strain, the plate-like δ phase disappeared and spherical δ phase appeared in the interior of grains and grain boundaries.  相似文献   

14.
Abstract

The stacking faults of a metastable γ″ phase precipitated in a nickel base superalloy, a modified JIS NCF 3 type alloy (X–750M), are investigated by TEM and an X-ray diffraction method. The γ″ precipitates are circular shaped plates at the early stage of aging and they become elliptic or irregular shaped plates at the latter stage of aging at temperatures up to 1033 K. Contrast which suggests the existence of stacking faults on {112}γ″ planes can be seen in many of the large γ″ precipitates extracted from the specimens aged at 1033 K for 36 ks or more. It is clear that the values of γ″ ?γ lattice mismatch increase with increasing aging time from the measurement of lattice constants of the γ and the γ″ phases. The formation of stacking faults on {112}γ″ planes in the large γ″ precipitates is due to the movement of an a/6 <disp-formula><graphic href="splitsection1-m1.tif"/></disp-formula> partial dislocation introduced by γ″ ?γ coherency strain. Since a part of the stacking sequence has a similar crystal structure to that of stable δ phase precipitates in a γ″ phase, the formation of stacking faults in the γ″ precipitates is considered to be favourable for their stabilisation.  相似文献   

15.
Abstract

Inert gas atomised Inconel 718 superalloy powder was characterised for various important properties and subsequently consolidated by hot isostatic pressing (hipping) at 1200° C and 120 MPa for 3 h. The density of the as compacted material was nearly the same as its theoretical density. Optical microscopy of as hipped material showed a fine grained structure with no porosity but having annealing twins and prior particle boundaries (PPBs). Electron probe microanalysis (EPMA) studies revealed that the PPBs were decorated with Al, Ti oxides, and MC type carbides enriched with Nb and Ti. In addition to these phases, the presence of very fine γ"-Ni3Nb and γ'-Ni3(Al,Ti) precipitates in the matrix were revealed by TEM analysis, which indicates that the compacted material was partially aged during the slow cooling stage of hipping. Tensile tests conducted on the as hipped material showed that the ultimate tensile strength (UTS) and ductility values were comparable to those obtained in the (solution treated and two step aged) wrought alloy 718, although its yield strength was marginally lower at room temperature.  相似文献   

16.
High purity hot hydrogn charging at high temperature was used to investigate the hydrogen embrittlement (HE) of JBK-75 alloys with different contents of P and Si(Mn). The results indicated that by lowering P content, the size and distribution γ' precipitate became more homogeneous and the precipitation of stable phase η was retarded, thus the hydrogen resistant properties of the alloy wes obviously improved; however, when Si(Mn) content was lowered together with P, though the size and density of γ' were also homogeneous and no η phase was observed, formation of some micro twin around grain boundaries was found to be detrimental to the hydrogen performance of the alloy. and hydrogen induced loss of area reduction was very high. Therefore, to improve the hydrogen resistant properties of the alloy, P content should be lowered while certain amount of Si(Mn) should be kept  相似文献   

17.
《Materials Letters》2006,60(17-18):2232-2235
The effects of P and B on the creep behavior of 718 alloys are discussed in this paper. The result implies that P and B have little effect on the γ″ and γ′ phases of the alloy, but they can enhance the grain boundary strength by segregating there, which can be of beneficial to the higher creep properties. P also may increase the grains strength through solid solution. The beneficial effect of P and B were presented in both standard IN718 alloy and DA718 alloy. Adding P and B together does a better work than adding P alone.  相似文献   

18.
Abstract

Multisheet structure of Inconel 718 superalloy will be widely used in vehicles as heat resisting and heat shielding structure due to its lightweight, high strength and stiffness. Multisheet structure of Inconel 718 superalloy was processed by laser beam welding and superplastic forming (LBW/SPF) technology in the present paper. Multisheet structure of Inconel718 superalloy processed by LBW/SPF technology exhibits good configuration and uniform thickness distribution. Laser beam welding parameters for multisheet structure were as follows: pulse frequency was 32 Hz; pulse duration 3 ms; peak power per pulse 4500 W; welding speed 180 mm min–1; SPF parameters were as follows: temperature Tf=965°C; forming pressure P f=4·2 MPa; forming time t f=130 min. Microstructure of multisheet structure was studied carefully. Microstructure in weld fusion zone was constituted of austenite dendritics and Laves phase precipitated in interdendritics. After SPF process, austenite dendritics in the weld fusion became coarser and most of Laves phases were dissolved and turned into δ precipitated phase but a few of Laves phases were still reserved. And Nb concentration in dendritics increased to 5·42% compared to 2·82% under as welded condition. Weld metal hardness increased from 331·63 under as welded condition to 391·74 under post-SPF condition which was closed to the base material hardness of post-SPF. Grain size of base material grew slightly and an amount of precipitated phase appeared in the base material undergoing SPF process. The tensile test results of base material show that tensile strength increased obviously and the ductility decreased slightly after SPF process. Therefore, LBW/SPF technology is an appropriate forming technique for multisheet structure of Inconel 718 superalloy.  相似文献   

19.
The microstructural evolution of Inconel 718 during aging processes has been studied through a combination of eddy current testing, X-ray diffraction analysis, and metallography and hardness measurements. Measurements were carried out in samples subjected to eight different heat treatment cycles, between 620 and 1035°C for 1–18 h. Different amounts of secondary precipitates were achieved, reaching 18% of delta phase for samples overaged at 900°C for 18 h. Results show that the different microstructures of Inconel 718 obtained have a distinguishable effect on electrical conductivity when this is measured through an appropriately sensitive technique (i.e. eddy current testing). The lowest conductivity values were observed for under aged samples (1·44% IACS). A clear increase in conductivity values was seen for all aged or overaged conditions, reaching a maximum of 1·63% IACS, when coarsening of intra granular precipitates, associated with an increase in density of globular precipitates at grain boundaries, was identified. The influence of microstructure on conductivity could be shown to be due to the competition between two effects on the scattering of electrons: matrix purification and precipitation characteristics. A combination of hardness values and electrical properties proved to be a fast and practical way of determining the stage of aging of the alloy.  相似文献   

20.
Hydrogen effects on mechanical strength and crack growth were studied at high temperatures. The study was motivated by the fact that the environmentally assisted cracking (EAC) of pressure vessel steel SA508 Cl.3 in 288 °C water was suspected to be related to hydrogen embrittlement. Fatigue crack growth rate and tensile tests were performed with hydrogen pre-charged specimens at high temperatures. At 288 °C the fatigue crack growth rate of the hydrogen pre-charged specimen was faster than that of as-received; the fatigue fracture surface of hydrogen pre-charged specimen correspondingly showed EAC like feature. Meanwhile, ductile striation was evident for the case of as-received in both air and argon gas environments. In the dynamic strain aging (DSA) loading condition at 288 °C during tensile tests, the pre-charged hydrogen induced a marked softening (decrease in ultimate tensile strength; UTS) as well as a little ductility loss; this was accompanied by the macrocracks grown from microvoids/microcracks promoted by DSA and hydrogen. These experiments showed that hydrogen embrittlement is an effective mechanism of EAC not only at low temperature but also at the high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号