首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ceramic based composites with dispersion of nano sized metal/metal carbide particles have generated wide technological interest for their improved mechanical properties — hardness, fracture strength as well as fracture toughness, superior electrical properties and magnetic properties. In the present investigation alumina–silica gels have been prepared along with nickel chloride and dextrose distributed in the nanometric pores of the gel. The gels are prepared with different molar proportions of alumina and silica containing 5 wt% of nickel chloride and 50 wt% excess dextrose. During heat treatment at a temperature of 900°C for half an hour in nitrogen atmosphere, nickel chloride is reduced to metallic nickel by in situ generated hydrogen in the silica–alumina matrix. X-ray analyses indicate that no nickel chloride reduction is possible upto 50 mol% silica in alumina–silica matrix. Beyond this range, higher the silica content, higher is the reduction of nickel chloride. The presence of metallic nickel has been substantiated further by SAD analysis. Particle size analysis based on X-ray diffraction as well as transmission electron micrograph shows the presence of nickel particles of size ∼20 nm distributed in the alumina–silica nanocomposite.  相似文献   

2.
Abstract

Silica–zirconia membranes were prepared using a sol–gel process, never before used on this system. Thin layers of gel were grown on the outside of porous alumina support tubes using the permeation of water through pores of the tube to control the rate of hydrolysis with a reactive silica–zirconia alkoxide solution. A recipe was developed and optimum coating conditions were found to be the ratios of tetraethylorthosilicate (TEOS) to Zr propoxide to 1-propanol molar ratios (1:0·5:17), with a coating time of 300 s. The method allowed the formation of a membrane in a single step compared with repeated coating and firing. The coatings could be prepared adherent and without cracks when properly prepared.  相似文献   

3.
Continuous alumina gel fibres were prepared by sol–gel method. The spinning sol was prepared by mixing aluminum nitrate, lactic acid and polyvinylpyrrolidone with a mass ratio of 10:3:1· 5. Thermogravimetry–differential scanning calorimetry (TG–DSC), Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibres. The Al2O3 fibres with a uniform diameter can be obtained by sintering gel fibres at 1200 °C.  相似文献   

4.
Amorphous, sol–gel derived SiO2 are known to biocompatible and bioresorbable materials. Biodegradable and inert materials containing radioactive isotopes have potential application as delivery vehicles of the beta radiation to the cancer tumors inside the body. Incorporation of holmium in the sol–gel derived SiO2 could lead to the formation of a biodegradable material which could be used as carrier biomaterial for the radiation of radioactive holmium to the various cancer sites. The homogeneity of the prepared sol–gel silica holmium monoliths was investigated by Back Scattered Electron Imaging of Scanning Electron Microscope equipped with Energy Dispersive X-ray Analysis, X-ray Induced Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The biodegradation of the monoliths was investigated in Simulated Body Fluid and TRIS (Trizma pre-set Crystals) solution. The results show that by suitable tailoring of the sol–gel processing parameters holmium can be homogeneously incorporated in the silica matrix with a controlled biodegradation rate.  相似文献   

5.
Silicon nanoparticles (Si-NPs) obtained by electrochemical etching of silicon wafer were incorporated into various dielectric matrices using sol–gel method. To attain a wide range of dielectric constant and band gap energy, three matrices are selected (SiO2, ZrO2 and TiO2) and the Si-NPs were incorporated in these matrices at different concentrations. Structural studies by transmission electron microscopy and Raman spectroscopy confirm the presence of Si-NPs in the matrices. Moreover, the significant compressive stress induced by the matrix is observed. Photoluminescence (PL) studies show that Si-NPs preserve their luminescent properties in SiO2 matrix and ZrO2 matrix but not in TiO2 matrix. The PL peak position depends not only on the dimension of Si-NPs but also depends on their concentrations. This is due to the coupling effect between the nanoparticles which increases with concentration.  相似文献   

6.
《Composites Part A》2001,32(8):1127-1131
Polycrystalline yttrium–aluminum garnet, Y3Al5O12 (YAG) fiber and α-alumina and YAG matrix composite fiber were prepared by the sol–gel method. α-Alumina and YAG matrix composite fiber with fine and homogeneous microstructure could be successfully fabricated by interpenetrating YAG in alumina matrix and adding α-alumina of seed particles to fibers. Effect of α-alumina seed particles and YAG on crystallization and microstructure of composite fiber were discussed. The size of alumina matrix of the composite fibers heated at 1600°C for 4 h was below 2 μm. The tensile of strength alumina fiber heat-treated at 1500°C was 0.2 GPa, while that of the composite fiber was 1.1 GPa.  相似文献   

7.
Preparation of nanocrystalline NiO thin films by sol–gel method and their hydrogen (H2) sensing properties were investigated. The thin films of NiO were successfully deposited on the glass and SiO2/Si substrate by a sol–gel coating method. The films were characterized for crystallinity, electrical properties, surface topography and optical properties as a function of calcination temperature and substrate material. It was found that the films produced by this method were polycrystalline and phase pure NiO. The H2 gas sensitivity of these films was studied as a function of H2 concentration and calcination temperature. The results indicated that the sol–gel derived NiO films could be used for the fabrication of H2 gas sensors to monitor low concentration of H2 in air quantitatively at low temperature range (< 200 °C).  相似文献   

8.
Mullite–SiC nanocomposite has been synthesised based on a nanoprecursor route and sintered to high density through pressureless sintering technique. The approach has been first to evolve a method to obtain high density, fine-grained mullite matrix phase through a sol–gel seeded route. Nanosize SiC particles (∼200 nm) were dispersed in a seeded mullite precursor sol to obtain mullite-coated SiC particles, which were further compacted and sintered to hybrid composites, resulting in distribution of SiC particles at the inter- and intra-mullite grain positions.  相似文献   

9.
The nanocomposite powders of γ-alumina-carbon nanotube were successfully synthesized by a sol–gel process. The homogeneous mixture of carbon nanotubes and alumina particles was obtained by mixing the carbon nanotubes within alumina solution and followed by heating into gel. The resultant gel was dried and calcined at 200 °C into boehmite-carbon nanotubes composite powders. The mean particle size of synthesized boehmite was of the order of 4 nm. The boehmite-carbon nanotubes composite powders were calcined at different temperatures and XRD investigations revealed that as the amount of carbon nanotube increases, γ- to α-alumina phase transformation is completed at higher temperatures. The specific surface area and mean particle size of resultant nanocomposite powders increased and decreased, respectively by increasing the content of carbon nanotubes.  相似文献   

10.
An in situ reaction sol–gel method to synthesize superhydrophilic titania films in silicon microchannels at room temperature is reported. Superhydrophilic surface can be realized on TiO2 films with thickness less than 10 nm. The water flow velocity in the TiO2-coated silicon channels reached almost 4 times of the velocity in SiO2-coated channels. The ultra-thin superhydrophilic TiO2 films fabricated by this method show the ability to strongly improve the capillary of microchannels without affecting the morphology of the channel walls, indicating potential applications to biomolecule analysis and surface tension driven microfluidic systems. Due to its low operating temperature, this method is also suitable for polymer microstructures such as PDMS and PMMA microfluidic chips.  相似文献   

11.
A DNA–cyclodextrin–silica composite was prepared by the sol–gel method. This composite possessed the bi-functions of double-stranded DNA, such as intercalation into DNA, and cyclodextrin, such as inclusion into its intramolecular cavity. Therefore, we demonstrated the accumulation of harmful compounds from an aqueous multi-component solution using a DNA–cyclodextrin–silica composite column. As a result, the DNA–cyclodextrin–silica composite column can effectively accumulate not only planar structure-containing harmful compounds, such as dioxin and polychlorobiphenyl (PCB) derivatives, but also non-planar structure containing compounds, such as bisphenol A and diethylstilbestrol, from an aqueous multi-component solution. The accumulated amount of these harmful compounds was more than 90%. Additionally, the DNA–cyclodextrin–silica composite column was recycled by the application of methanol. Therefore, the DNA–cyclodextrin–silica composite may have the potential to be used as an environmental material for the accumulation of harmful compounds from industrial or experimental waste.  相似文献   

12.
Mesoporous silica films were prepared from tetraethylorthosilicate by an acid-catalyzed sol–gel process in the presence of side-chain polyether modified polydimethylsiloxane. The samples were characterized using Fourier transform infrared spectroscopy, differential thermal analysis and thermogravimetric analysis, field emission scanning electron microscopy, and atomic force microscopy. Furthermore, the dielectric properties of the silica films annealed at different temperatures were investigated at frequencies ranging from 1 to 200 kHz. In addition, the temperature dependence of the dielectric properties of as-prepared porous silica films is discussed in detail.  相似文献   

13.
Fe-doped nanocrystalline samples of titanium oxide have been synthesised by sol–gel route and conventional sintering process at 450°C under atmospheric conditions. These samples are characterised by X-ray diffraction (XRD), X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and dielectric property measurement. Samples with Fe content more than 4?mole% crystallises in rutile phase and those with less than 4?mole% crystallises in anatase phase. Nanocrystallite size has been controlled by Fe doping. Crystallite size was found to decrease with Fe concentration in the anatase phase samples whereas reverse happens in rutile phase samples of titanium oxide. There is a slight variation in numerical values of crystallite sizes measured by the two techniques: TEM and XRD peak broadening. The highest crystallite size was 86?nm in 10?mole% Fe-doped samples and the lowest 20?nm in 4?mole% Fe-doped sample. Large dispersions and anomalous values of the dielectric constant, εr were observed at low frequency in anatase phase samples. Rutile phase samples exhibit little dispersion over the measurement frequency range of 20?Hz to 10?MHz. The dielectric constant value of all the samples stabilises to a constant value at higher frequencies. This value is dependent on the final crystalline phase but independent of the crystallite size. The anomalous dielectric behaviour of anatase samples at low frequencies is assigned to the adsorbed –OH ions on the sample surface.  相似文献   

14.
Monodisperse silica nanoparticles were prepared via miniemulsion sol–gel reaction of tetraethyl orthosilicate (TEOS). Hexadecane (HD) or hexadecyltrimethoxysilane was used as costabilizer to effectively retard the Ostwald ripening process involved in TEOS miniemulsion. The Ostwald ripening behavior was characterized by dynamic light scattering (DLS), and it was adequately described by the modified Kabal’nov equation. The miniemulsion sol–gel reaction of TEOS/HD with a volume fraction (φ c) of 0.024 at 80 °C is stable in the pH range 6–10. By contrast, gelation of reacting miniemulsions occurs at 70 and 100 min at pH 4 and 5, respectively. The weight-average silica particle size (d w) of colloidal products prepared at 80 °C and pH 7 decreases from 59 to 36 nm with low polydispersity index (PDI, in the range 1.02–1.03), determined by transmission electron microscopy, when the φ c of HD increases from 0.024 to 0.23. At constant φ c (0.024), the resultant silica nanoparticles show larger d w (83 nm) and PDI (1.35) for the TEOS/HD system at pH 10 as compared to the counterpart of pH 7. Furthermore, for the TEOS/HD system at pH 7 and low φ c (0.024), d w increases significantly with temperature being increased from 25 to 80 °C. By contrast, the effect of temperature on silica nanoparticle size becomes insignificant when a high level of HD (φ c = 0.23) is used. Zeta potential measurements and field emission scanning electron microscopy were used to characterize the surface charge density and morphology of resultant silica nanoparticles.  相似文献   

15.
Nickel–silver (Ni–Ag) core–shell nanoparticles (NPs) were prepared by depositing Ag on Ni nanocores using the liquid-phase reduction technique in aqueous solution, and their properties were characterised using various experimental techniques. The core–shell NPs had good crystallinity, and the thicknesses of the Ag nanoshells could be tuned effectively. The oxidation resistance of the Ag surface and the electroconductive properties of the Ni core allowed these Ni–Ag core–shell NPs to be used in a conductive paste. Thick films composed of Ni–Ag core–shell NPs were screen-printed on a polycrystalline silicon substrate then sintered at temperatures ranging from 500 °C to 800 °C. Stable resistivity was obtained when the sintering temperature was higher than 650 °C, and the electrical properties of the Ni–Ag core–shell paste were close to those of pure Ag paste. Thus, the Ni–Ag NPs can partly replace pure Ag NPs in conductive pastes.  相似文献   

16.
Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in situ sol–gel process using calcium hydroxide and phosphoric acid precursors in the presence of Tetrahydrofuran (THF) as a solvent. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) analyses. The results indicated that pure HA nanoparticles were well-incorporated and homogenously dispersed in the PCL matrix. It was found that the mechanical property of PCL was improved by addition of 20 wt.% HA nanoparticles. Furthermore, the biological property of nanocomposites was investigated under in vitro condition. For this purpose, HA/PCL scaffolds were prepared through a salt leaching process and immersed in a saturated simulated body fluid (SBF) after 3 and 7 days. It was found that a uniform layer of biomimetic HA could be deposited on the surface of HA/PCL scaffolds. Therefore, the prepared HA/PCL scaffolds showed good potential for bone tissue engineering and could be used for many clinical applications in orthopedic and maxillofacial surgery.  相似文献   

17.
《Composites Part A》2005,36(7):909-914
Polyimide/silica/titania hybrid films were prepared via a non-hydrolytic sol–gel route. Silicic acid and titanium tetrachloride were used as the precursors of silica and titania, respectively. The absorption band of Si–O–Ti bonds in FTIR spectra of the hybrid films revealed the formation of the hybrid inorganic network between SiO2 and TiO2. Scanning electron microscopy results indicated that the nanometer-scaled inorganic domains were homogeneously dispersed in polyimide matrix due to the introduction of silica-stabilized TiO2 and the interactions between organic and inorganic phases. The studies on the optical properties of the hybrid films indicated the red-shift of the absorption band increased with increasing TiO2 content, while all the hybrid films maintained their transparencies. The surface resistances of the hybrid samples decreased with increasing TiO2 content. The thermal decomposition temperature of the ternary hybrid films decreased slightly with increasing TiO2 content. This kind of hybrid materials may have potential application in the preparation of opto-electronic devices.  相似文献   

18.
Journal of Materials Science - Over the last few years, bone repair has increasingly gained in importance. In recent years, considerable attention has been given to the administration of...  相似文献   

19.
We have prepared silica glass by the sol–gel method and studied its ability to disperse the Ca-α-SiAlON:Eu2+ phosphor for application in white light emitting diodes (LEDs). The emission color generated by irradiating doped glass with a blue LED at 450 nm depended on the concentration of SiAlON and the glass thickness, resulting in nearly white light. The luminescence efficiency of 1-mm-thick glass depended on the SiAlON concentration, and was highest at 4 wt% SiAlON.  相似文献   

20.
《Materials Letters》2001,47(1-2):20-24
For the first time, crack-free, dense and transparent tetragonal NiTa2O6 single-phase structure thin films have been prepared by a sol–gel method using tantalum isopropoxide and nickel acetate. The formation of the NiTa2O6 phase starts from 750°C onwards. The complete tetragonal structure of NiTa2O6 forms on silicon(100) substrates at an annealing temperature of 850°C for 5 h. As the annealing temperature increased from 750°C to 950°C, we have not observed any kind of silicate phases due to silicon diffusion at the interface of Si and NiTa2O6 phase. Structural, morphological and elemental evolution of these NiTa2O6 thin films produced by the sol–gel synthesis were characterized by grazing incidence X-ray diffraction (GIXRD), tapping mode atomic force microscopy (TMAFM) and X-ray photoelectron spectroscopy (XPS), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号