首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A SiC particulate-reinforced Si–C–N ceramic composite was fabricated using the precursor impregnation and pyrolysis method, and its thermal and mechanical properties were analyzed. The weight loss of the composite was 5% after a heating at 2100 °C in Ar. The pores of the composite enlarged at and above 1700 °C in Ar due to the decomposition of the Si–C–N matrix. However, the composite retained mechanical properties such as strength and hardness after heating at 1700 °C. 88% of the original strength was remained after heating at 2000 °C for 10 h although the fabrication temperature was 1350 °C. The weight gain of the composite was 3.2% after an oxidation at 1450 °C for 30 min in air. The inner oxidation of the particulate-reinforced composites (PRC) was suppressed above 1400 °C due to the closure of the open pores by SiO2. Consequently, the composite possessed excellent creep resistance at 1400 °C in air. The SiC/Si–C–N composite is a challenging candidate for the application at high temperature.  相似文献   

2.
Hydrothermal synthesis of Mn–mica was achieved using metakaolin and manganese carbonate or silicic acid and aluminum nitrate as aluminosilicate sources along with manganese carbonate in aqueous solutions of KOH. The mixtures of starting materials were treated under hydrothermal conditions at 100–200 °C for 24–48 h. The use of metakaolin and manganese chloride also led to the synthesis of Mn–mica under hydrothermal conditions. From metakaolin and manganese carbonate, fine well-crystallized Mn–mica was hydrothermally synthesized at 200 °C using different KOH concentrations. However, from the mixtures of silicic acid, aluminum nitrate and manganese carbonate, poorly crystallized micas were synthesized at 200 °C using different Si/Al molar ratios of starting mixtures. Increasing the duration of hydrothermal treatment from 24 to 48 h yielded somewhat better crystallized Mn–mica as determined by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed a particle size of about 1 µm and plate-like shape of the synthetic Mn–mica.  相似文献   

3.
The sintering behaviors and microwave dielectric properties of the 16CaO–9Li2O–12Sm2O3–63TiO2 (abbreviated CLST) ceramics with different amounts of V2O5 addition had been investigated in this paper. The sintering temperature of the CLST ceramic had been efficiently decreased by nearly 100 °C. No secondary phase was observed in the CLST ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLST ceramics with small amounts of V2O5 addition could be well sintered at 1200 °C for 3 h without much degradation in the microwave dielectric properties. Especially, the 0.75 wt.% V2O5-doped ceramics sintered at 1200 °C for 3 h have optimum microwave dielectric properties of Kr = 100.4, Q × f = 5600 GHz, and TCF = 7 ppm/°C. Obviously, V2O5 could be a suitable sintering aid that improves densification and microwave dielectric properties of the CLST ceramics.  相似文献   

4.
High-surface mesoporous silicas with different pore sizes were employed for the first time as silicon precursors in the synthesis of reddish Fe2O3–SiO2 inclusion pigments. Interestingly, the size of included Fe2O3 nanoparticles was partially controlled through confinement effects into silica mesopores. Notably, impregnated samples showed a more homogeneous and efficient encapsulation of smaller and monodisperse hematite nanoparticles (sizes around 10–35 nm). Moreover, they resulted in an improved reddish color at 1000 °C within a ceramic glaze. The best red shade (a* ≈ 18) was associated to nanocomposite with smaller hematite nanoparticles (around 5 nm). These promising results suggest the possibility to improve the reddish coloration and thermostability of Fe2O3–SiO2 ceramic pigments through and adequate control of confinement effects into sintered mesoporous silicas.  相似文献   

5.
Alkaline basaltic tuffs, from Southern Turkey were characterized and employed to obtain ceramic and glass–ceramic materials by combined sintering and crystallization process. The chemical and mineralogical compositions were analyzed by X-ray fluorescence spectrometry and X-ray diffraction analyses, respectively. The phase formation and the sintering behaviour were investigated by DTA, differential dilatometer and hot-stage microscopy. The micro-structure and residual porosity of the sintered samples were observed by SEM and evaluated by pycnometric techniques. Ceramic material, based on 50% basaltic tuff and 50% clay, was obtained at 1150 °C with 13% total porosity and 4% water absorption. Glass–ceramic materials were synthesized directly using the milled basaltic tuff by mean of the sinter-crystallization technique, in the range 900–1150 °C. The investigation has showed that, due to the high porosity and low crystallinity, alkaline tuffs could be a suitable raw material for ceramic application.  相似文献   

6.
Cu–ZnO and Mn–Cu–ZnO catalysts have been prepared by electrodeposition and tested for the synthesis of higher alcohols via CO hydrogenation. The catalysts were prepared in the form of nanowires and nanotubes using a nanoporous polycarbonate membrane, which served as a template for the electrodeposition of the precursor metals from an aqueous electrolyte solution. Electrodeposition was carried out using variable amounts of Zn(NO3)2, Cu(NO3)2, Mn(NO3)2 and NH4NO3 at different galvanostatic conditions. A fixed bed reactor was used to study the reaction of CO and H2 to produce alcohols at 270 °C, 10–20 bar, H2/CO = 2/1, and 10,000–33,000 scc/h gcat. In addition to methane and CO2, methanol was the main alcohol product. The addition of manganese to the Cu–ZnO catalyst increased the selectivity toward higher alcohols by reducing methane formation; however, CO2 selectivity remained high. Maximum ethanol selectivity was 5.5%, measured as carbon efficiency.  相似文献   

7.
Oxidation tests of carbon fiber reinforced silicon carbide composites with a Si–W coating were conducted in dry air from room temperature to 1500°C for 5 h. A continuous series of empirical functions relating weight change to temperature after 5 h oxidation was found to fit the test results quite well over the whole temperature range. This approach was used to interpret the different oxidation mechanisms. There were two cracking temperatures of the matrix and the coating for the C–SiC composite. Oxidation behavior of the C–SiC composite was nearly the same as that of the coated C–C composite above the coating cracking temperature, but weight loss of the C–SiC composite was half an order lower than that of the coated C–C composite below the cracking temperature. As an inhibitor, the SiC matrix increased the oxidation resistance of C–SiC composites by decreasing active sites available for oxidation. As an interfacial layer, pyrolytic carbon decreased the activation energy below 700°C. From 800°C to 1030°C, uniform oxidation took place for the C–SiC composite, but non-uniform oxidation took place for the coated C–C composite in the same temperature range. The Knudsen diffusion coefficient could be used to explain the relationship between weight loss and temperature below the coating cracking temperature and the matrix cracking temperature.  相似文献   

8.
The novel high-temperature adhesives (HTAs) were prepared using phenol–formaldehyde (PF) resin as matrix and elemental silicon or boron carbide as modification additives. The bonding properties of the above adhesives were investigated by the bonding experiment on graphite substrate. The graphite joints were heat treated at high temperatures ranging from 200 to 1500 °C. It was shown that the degradation and the content of PF resin had important influences on the bonding properties of the HTAs. The pyrolysis and degradation of the organic resin led to the drastic volume shrinkage and the decrease of mechanical strength of resin matrix. It is the main reason leading to the failure of the joints treated at high temperatures, especially in the range of 400–650 °C. It is concluded that the satisfactory bonding property of the novel organic resin matrix HTAs lies in two aspects: (i) the selection of additives with good modification effect, and (ii) the optimized ratio between resin matrix and modification additives.  相似文献   

9.
In the present study, a C/SiFeN(O)-based ceramic paper with in situ generated hierarchical micro/nano-morphology was prepared upon thermal treatment of a cellulose-base paper surface-modified with a polymeric single-source precursor prepared from perhydropolysilazane (PHPS) and iron(II) acetylacetonate (Fe(acac)2). The ammonolysis at 1000 °C of the paper/precursor hybrid materials leads to a C/SiFeN(O)-based ceramic paper which exhibits the same morphology as that of the cellulose paper. Subsequent annealing of the ceramic paper in nitrogen atmosphere at temperatures from 1200 to 1400 °C results in the in-situ generation of ultra-long silicon nitride nanowires with aspect ratios in the range of 103 on the surface and in the macropores of the ceramic paper. The nanowires exhibit round Fe3Si tips at the end, indicating that the growth occurred via iron-catalyzed VLS (vapor-liquid-solid) mechanism. The combination of single-source precursor, porous template and in situ VLS growth of 1D nanostructures provides a convenient one-pot synthesis approach to produce ceramic nanocomposites with hierarchical morphologies.  相似文献   

10.
In the present work, nano-crystalline Ce0.9Gd0.1O1.95 (GDC) powder has been successfully prepared by a novel sol–gel thermolysis method using a unique combination of urea and PVA. The gel precursor obtained during the process was calcined at 400 and 600 °C for 2 h. A range of analyzing techniques including XRD, TGA, BET, SEM, EDS and TEM were employed to characterize the physical and chemical properties of obtained powders. GDC gel precursors calcined at 400 and 600 °C were found to have an average crystallite size of 10 and 19 nm, respectively. From the result of XRD patterns, we found that well-crystalline cubic fluorite structure GDC was obtained by calcining the precursor gel at 400 and 600 °C. It has been also found that the sintered samples with lower temperature calcined powder showed better sinterability as well as higher ionic conductivity of 2.21 × 10−2 S cm−1 at 700 °C in air.  相似文献   

11.
To develop a high strength machinable glass–ceramic through pressureless sintering, the glassy compositions were obtained by mixing a mica-based frit and a frit in the SiO2–CaO–Na2O system. According to XRD results, the glass compositions mainly crystallized into phlogopite and diopside after sintering. The optimum sintered glass–ceramic with desirable mechanical properties, machinability and sinterability was achieved by addition of 30 wt.% SiO2–CaO–Na2O glass powder to 70 wt.% mica glass composition. SEM results confirmed presence of needle-like diopside crystals which played a reinforcement role to the platelet phlogopite and glassy matrix combination. The measurements showed bending strength and fracture toughness enhanced up to 144.6 ± 17.6 MPa and 1.7 ± 0.2 MPa m1/2, respectively.  相似文献   

12.
Pd@SiO2 core–shell-particles were prepared by coating silica onto the surface of Pd–polyvinylpyrrolidone (PVP) colloids, according to the Stober method. These particles were characterized with SEM, TEM, nitrogen adsorption/desorption, XRD, CO chemisorption, and were used to catalyze the hydrogenation of 4-carboxybenzaldehyde (4-CBA) to p-toluic acid (PT). The maximum PT yield (around 99%) occurred at 160–175 °C, which was much lower than the temperature (250–270 °C) used in the commercial terephthalic acid refining process (with a Pd/C catalyst).  相似文献   

13.
Glass/ceramic composite materials based on CaF2–AlF3–SiO2 oxyfluoride glass and silica ceramic filler were prepared. The sintering behavior, phase composition and dielectric property of oxyfluoride glass/silica ceramic composites, as well as its compatibility with Ag electrode, were investigated. The results show that the glass/ceramic composite system can be sintered at 825 °C. When the amount of SiO2 increased from 0 to 20 wt.%, the shrinkage decreased from 17.0 to 14.5%, and the dielectric constant decreased from 5.9 to 5.4, while the thermal expansion coefficient (20–200 °C) increased from 6.0 to 10.1 ppm/°C. The sintered samples had low dielectric losses less than 0.002 and high flexural strengths. This novel glass/ceramic composite system exhibits good sintering compatibility with silver paste, which makes it a promising candidate for low temperature co-fired ceramic application.  相似文献   

14.
The microstructure, electrical properties, dielectric characteristics, and DC accelerated aging behavior of the ZVM-based varistors were investigated for different sintering temperatures of 800–950 °C. The microstructure of the ZVM-based ceramics consisted of mainly ZnO grain and secondary phase Zn3(VO4)2, which acts as liquid-phase sintering aid. The Zn3(VO4)2 has a significant effect on the sintered density, in the light of an experimental fact, which the decreases of the Zn3(VO4)2 distribution with increasing sintering temperature resulted in the low sintered density. The breakdown field exhibited the highest value (17,640 V/cm) at 800 °C in the sintering temperature and the lowest value (992 V/cm) at 900 °C in the sintering temperature. The nonlinear coefficient exhibited the highest value, reaching 38 at 800 °C and the lowest value, reaching 17 at 850 °C. The varistor sintered at 900 °C exhibited not only high nonlinearity with 27.2 in nonlinear coefficient, but also the highest stability, in which %ΔE1 mA = −0.6%, %Δα = −26.1%, and %Δ tan δ = +21.8% for DC accelerated aging stress of 0.85 E1 mA/85 °C/24 h.  相似文献   

15.
The objective of this work was to establish the optimum conditions to get zirconia materials with different proportions of zirconium titanate by reaction sintering of ZrO2 stabilized with 3 mol% of Y2O3 (Y-TZP) and TiO2. The green bodies were fabricated from stable colloidal suspensions of the powders by slip casting in plaster moulds.The rheological characterization of the suspensions allowed the establishment of the optimum green processing conditions. Reaction sintering was performed at 1500 °C during 2 h, and the obtained materials have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy with energy dispersive X-ray microanalysis (FE-SEM-EDX). Under these conditions, zirconium titanate materials with tetragonal zirconia could not be obtained because a solid solution of cubic zirconia with titania and yttria is formed at 1500 °C. The thermal expansion of the materials was determined by differential dilatometry from room temperature up to 850 °C, demonstrating that the incorporation of zirconium titanate reduces the thermal expansion of zirconia.  相似文献   

16.
Two series of Sr- or Ce-doped La1−xMxCrO3 (x = 0.0, 0.1, 0.2 and 0.3) catalysts were prepared by thermal decomposition of amorphous citrate precursors followed by annealing at 800 °C in air atmosphere. The effect of Ce and Sr on the morphological/structural properties of LaCrO3 was investigated by means of thermogravimetric/differential thermal analysis (TG/DTA) of the precursors decomposition under air, X-ray diffraction (XRD), electron paramagnetic resonance (EPR), transmission electron microscopy–X-ray energy dispersive spectroscopy (TEM–XEDS), SBET determination, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques. The characterization results are employed to explain catalytic activity results for C3H6 combustion. It is shown that the lanthanum chromite perovskite structure is obtained upon thermal treatment of the sol–gel derived precursors at T > ca. 800 °C. The presence of the dopant generally induces the formation of segregated oxide phases in the samples calcined at 800 °C although some introduction of the Sr in the perovskite structure is inferred from EPR measurements. The oxidation activity becomes maximised upon formation of such doped perovskite structure.  相似文献   

17.
Nitrogen-rich Ca-α-Sialon (CaxSi12−2xAl2xN16 with x = 0.2, 0.4, and 0.8, 1.2 and 1.6) ceramics were prepared from the mixtures of Si3N4, AlN and CaH2 powders in a hot press at 1800 °C using a pressure of 35 MPa and a holding time of 4 h, and then were investigated with respect to reaction mechanism, phase stability and oxidation resistance. In addition the sample with x = 1.6 was prepared in the temperature range 600–1800 °C using a pressure of 35 MPa and a holding time of 2 h. The α-Sialon phase was first observed at 1400 °C but the α-Si3N4 and AlN phases were still present at 1700 °C. Phase pure Ca-α-Sialon ceramics could not be obtained until the sintering temperature reached 1800 °C. The phase pure nitrogen-rich Ca-α-Sialon exhibited no phase transformation in the temperature range 1400–1600 °C. In general, mixed α/β-Sialon showed better oxidation resistance than pure α-Sialon in the low temperature range (1250–1325 °C), while α-Sialons with compositions located at α/β-Sialon border-line showed significant weight gains over the entire temperature range tested (1250–1400 °C). The phases formed upon oxidation were characterized by X-ray, SEM and TEM studies.  相似文献   

18.
Crystallization kinetics of amorphous alumina–zirconia–silica ceramics was studied by nonisothermal differential scanning calorimetry (DSC). Different amorphous materials were produced by plasma spraying of near-eutectic Al2O3–ZrO2–SiO2 mixtures. Phase composition and microstructure of the amorphous materials and nanocrystalline products were analyzed. All of the investigated materials show an exothermic peak between 940 and 990 °C in the DSC experiments. The activation energies calculated from DSC traces decrease with increasing SiO2 concentration. Values of the Avrami coefficients together with results of the microstructural observations indicate that tetragonal zirconia crystallization from materials containing more than 10 wt.% SiO2 proceeds by a diffusion-controlled mechanism with nucleation occurring predominantly at the beginning of the process. In contrast, material with almost no SiO2 exhibited a value of the Avrami exponent consistent with the crystal growth governed by processes at the phase boundary.  相似文献   

19.
A.V.K. Westwood  B. Rand  S. Lu 《Carbon》2004,42(15):3071-3080
Precursors to C–B–Si alloys have been produced by boronation of a carbon silicon alloy precursor derived from petroleum pitch and polydimethylsilane. A monofunctional boronation reagent, catechol·borane, was used in combination with the siliconised pitch precursor to produce meltable C–B–Si precursors. Use of the trifunctional borane·pyridine led to cross-linking and an insoluble infusible C–B–Si alloy precursor. The C–B–Si alloys have excellent built-in oxidation resistance compared with carbon materials and even when compared with C–Si alloys derived from the siliconised pitch precursor. The improved oxidation resistance arises from the formation of a glassy borosilicate coating on the alloys as shown by X-ray photoelectron spectroscopy, SIMS and energy dispersive analysis of X-rays. Optical microscopy and SEM shows that the coating does not have a well-defined interface with the sample core. SIMS provides strong evidence for a surface composition that gradually varies with depth after oxidation. Oxidation protection is maintained in the C–B–Si alloy system under thermal cycling conditions in dry air. In moist air a preformed borosilicate barrier still offers protection against oxidation but it appears that moisture prevents the initial formation of a coherent glassy protective layer, possibly via gasification of silicon and boron hydroxides.  相似文献   

20.
Supported nickel catalysts of composition Ni/Y2O3–ZrO2 were synthesized in one step by the polymerization method and compared with a nickel catalyst prepared by wet impregnation. Stronger interactions were observed in the formed catalysts between NiO species and the oxygen vacancies of the Y2O3–ZrO2 in the catalysts made by polymerization, and these were attributed to less agglomeration of the NiO during the synthesis of the catalysts in one step. The dry reforming of ethanol was catalyzed with a maximum CO2 conversion of 61% on the 5NiYZ catalyst at 800 °C, representing a better response than for the catalyst of the same composition prepared by wet impregnation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号