首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ectoderm of the vertebrate limb and feather bud are epithelia that provide good models for epithelial patterning in vertebrate development. At the tip of chick and mouse limb buds is a thickening, the apical ectodermal ridge, which is essential for limb bud outgrowth. The signal from the ridge to the underlying mesoderm involves fibroblast growth factors. The non-ridge ectoderm specifies the dorsoventral pattern of the bud and Wnt7a is a dorsalizing signal. The development of the ridge involves an interaction between dorsal cells that express radical fringe and those that do not. There are striking similarities between the signals and genes involved in patterning the limb ectoderm and the epithelia of the Drosophila imaginal disc that gives rise to the wing. The spacing of feather buds involves signals from the epidermis to the underlying mesenchyme, which again include Wnt7a and fibroblast growth factors.  相似文献   

2.
Signalling via the receptor Notch, delivered by the ligands Delta and Serrate, plays a key role in many cell fate decisions in both Drosophila and vertebrate development (for review seeArtavanis-Tsakonas, S., Matsuno, K. and Fortini, M.E., 1995. Notch signalling. Science 268, 225-232; Lewis, J., 1996. Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol. 6, 3-10; Blair, S.S., 1997. Limb development: marginal fringe benefits. Curr Biol. 7, 686-690; Irvine, K.D. and Vogt, T.F., 1997. Dorsal-ventral signaling in limb development. Curr. Opin. Cell Biol. 9, 867-876). Recently vertebrate homologues of Notch (Notch1; Myat, A., Henrique, D., Ish-Horowicz, D. and Lewis, J., 1996. A chick homologue of Serrate and its relationship with Notch and Delta homologues during central neurogeneis. Dev. Biol. 174, 233-247) and Serrate (Serrate1 and 2; Myat, A., Henrique, D., Ish-Horowicz, D. and Lewis, J., 1996. A chick homologue of Serrate and its relationship with Notch and Delta homologues during central neurogeneis. Dev. Biol. 174, 233-247; Hayashi, H., Mochii, M., Kodama, R., Hamada, Y., Mizuno, N., Eguchi, G. and Tachi, C., 1996. Isolation of a novel chick homolog of Serrate and its coexpression with Notch-1 in chick development. Int. J. Dev. Biol. 40, 1089-96; Laufer, E., Dahn, R., Orozco, O.E., Yeo, C.Y., Pisenti, J., Henrique, D., Abbott, U., Fallon, J.F. and Tabin, C., 1996. Expression of Radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386, 366-373; Rodriguez-Esteban, C., Schwabe, J.W., De La Pena, J., Foys, B., Eshelman, B. and Izpisua-Belmonte, J.C., 1997. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 386, 360-366) were shown to be expressed in early chick limb mesenchyme and apical ridge. However, later expression patterns of these genes and of Delta 1 (Henrique, D. , Adam, J., Myat, A., Chitnis, A., Lewis, J. and Ish-Horowicz, D., 1995. Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787-790) in vertebrate limbs have not been documented. We have used whole mount in-situ hybridization to document expression patterns of Notch1, Serrate1, Serrate2 and Delta1 within the mesenchyme of the developing chick limb up to stage 31 of development. We show these genes are expressed, in different combinations, in the vasculature, the musculature and the tissues of the handplate.  相似文献   

3.
We have analyzed the pattern of expression of several genes implicated in limb initiation and outgrowth using limbless chicken embryos. We demonstrate that the expressions of the apical ridge associated genes, Fgf-8, Fgf-4, Bmp-2 and Bmp-4, are undetectable in limbless limb bud ectoderm; however, FGF2 protein is present in the limb bud ectoderm. Shh expression is undetectable in limbless limb bud mesoderm. Nevertheless, limbless limb bud mesoderm shows polarization manifested by the asymmetric expression of Hoxd-11, -12 and -13, Wnt-5a and Bmp-4 genes. The posterior limbless limb bud mesoderm, although not actually expressing Shh, is competent to express it if supplied with exogenous FGF or transplanted to a normal apical ridge environment, providing further evidence of mesodermal asymmetry. Exogenous FGF applied to limbless limb buds permits further growth and determination of recognizable skeletal elements, without the development of an apical ridge. However, the cells competent to express Shh do so at reduced levels; nevertheless, Bmp-2 is then rapidly expressed in the posterior limbless mesoderm. limbless limb buds appear as bi-dorsal structures, as the entire limb bud ectoderm expresses Wnt-7a, a marker for dorsal limb bud ectoderm; the ectoderm fails to express En-1, a marker of ventral ectoderm. As expected, C-Lmx1, which is downstream of Wnt-7a, is expressed in the entire limbless limb bud mesoderm. We conclude that anteroposterior polarity is established in the initial limb bud prior to Shh expression, apical ridge gene expression or dorsal-ventral asymmetry. We propose that the initial pattern of gene expressions in the emergent limb bud is established by axial influences on the limb field. These permit the bud to emerge with asymmetric gene expression before Shh and the apical ridge appear. We report that expression of Fgf-8 by the limb ectoderm is not required for the initiation of the limb bud. The gene expressions in the pre-ridge limb bud mesoderm, as in the limb bud itself, are unstable without stimulation from the apical ridge and the polarizing region (Shh) after budding is initiated. We propose that the defect in limbless limb buds is the lack of a dorsal-ventral interface in the limb bud ectoderm where the apical ridge induction signal would be received and an apical ridge formed. These observations provide evidence for the hypothesis that the dorsal-ventral ectoderm interface is a precondition for apical ridge formation.  相似文献   

4.
The apical ectodermal ridge (AER) is an essential structure for vertebrate limb development. Wnt3a is expressed during the induction of the chick AER, and misexpression of Wnt3a induces ectopic expression of AER-specific genes in the limb ectoderm. The genes beta-catenin and Lef1 can mimic the effect of Wnt3a, and blocking the intrinsic Lef1 activity disrupts AER formation. Hence, Wnt3a functions in AER formation through the beta-catenin/LEF1 pathway. In contrast, neither beta-catenin nor Lef1 affects the Wnt7a-regulated dorsoventral polarity of the limb. Thus, two related Wnt genes elicit distinct responses in the same tissues by using different intracellular pathways.  相似文献   

5.
An early event in Drosophila eye development is the division of the eye disc into dorsoventral domains. The dorsoventral pattern is displayed in the adult compound eye as a distinct mirror symmetry across the dorsoventral midline or equator. The dorsoventral axis is also implicated in organizing early development of the eye, as retinal differentiation is initiated at the posterior dorsoventral midline. Here we show that Fringe is expressed specifically in the ventral half of the undifferentiated eye disc, thus creating a dorsoventral boundary. Ectopic Fringe borders that are generated by clones of fringe cells can reverse the planar polarity of photoreceptor clusters, indicating that the Fringe boundary is crucial for the induction of mirror symmetry. Lack of a Fringe boundary disrupts equatorial expression of Notch signalling proteins and causes a complete failure of eye development. Our results indicate that the formation of the Fringe boundary and subsequent Notch signalling at the equator are essential for organizing mirror symmetry and eye morphogenesis.  相似文献   

6.
The developing vertebrate limb is an excellent system to study the mechanisms that lead to skeletal, muscular and nervous patterns. Pattern formation in the limb occurs in relation to three axes: the antero-posterior axis, the proximo-distal axis and the dorso-ventral axis. Extensive classical embryological experiments on chick limb buds have identified some of the cell interactions related to these three axes. Recent works in developmental biology have begun to identify the molecular basis of these cell interactions which control patterns and forms of the limb. In this review, a possible model of dorsoventral limb patterning is proposed, based on an experiment using ectoderm/mesoderm recombinations in which the dorsoventral axis of the tissues is inverted. Based on comparative anatomical studies of the shoulder and pelvic regions, the anatomy of the transitional zone between limb and trunk regions is discussed. In addition, the problem of the nerve-muscle relationship in gross anatomy is also discussed from the viewpoint of the pattern formation.  相似文献   

7.
8.
9.
The apical ectodermal ridge (AER) is a specialized thickening of the distal limb ectoderm, and its signals are known to support limb morphogenesis. The expression of a homeobox gene, Msx1, in the distal limb mesoderm depends on signals from the AER. In the present paper it is reported that Msx1 expression in the distal mesoderm is necessary for the transfer of AER signals in chick limb buds. Interruption of AER-mesoderm interaction by insertion of a thick filter led to the inhibition of pattern specification in the mesoderm just under the filter. In such cases, the expression of Msx1 disappeared in the mesoderm under the filter, suggesting that AER is able to signal over short ranges. In advanced limb buds, Msx1 is also expressed in the proximal mesoderm under the anterior ectoderm. However, it was found that a grafted antero-proximal mesoderm shows no inhibitory effects on pattern specification of the host mesoderm, as is the case with the distal mesoderm. On the other hand, grafted mesoderms without potent Msx1 re-expression, even underneath AER, disturbed normal limb development. In such cases, the expression of Msx1 disappeared in the mesoderm under the grafts, whereas Fgf-8 expression was maintained in the AER above the graft. These results indicate that the expression of Msx1 in the mesoderm is important for the transfer of AER signals.  相似文献   

10.
Eph receptors and their ligands, the ephrins, have been implicated in early patterning and axon guidance in vertebrate embryos. Members of these families play pivotal roles in the formation of topographic maps in the central nervous system, the formation of brain commissures, and in the guidance of neural crest cells and motor axons through the anterior half of the somites. Here, we report a highly dynamic expression pattern of the chick EphA7 gene in the developing limb. Expression is detected in discrete domains of the dorsal mesenchyme from 3 days of incubation. The expressing cells are adjacent to the routes where axons grow to innervate the limb at several key points: the region of plexus formation, the bifurcation between dorsal and ventral fascicles, and the pathway followed by axons innervating the dorsal muscle mass. These results suggested a role for EphA7 in cell-cell contact-mediated signalling in dorsal limb patterning and/or axon guidance. We carried out experimental manipulations in the chick embryo wing bud to alter the dorsoventral patterning of the limb. The analyses of EphA7 expression and innervation in the operated wings indicate that a signal emanating from the dorsal ectoderm regulates EphA7 in such a way that, in its absence, the wing bud lacks EphA7 expression and shows innervation defects at the regions where the gene was downregulated. EphA7 downregulation in the dorsal mesenchyme after dorsal ectoderm removal is more rapid than that of Lmx-1, the gene known to mediate dorsalisation in response to the ectodermal signal. These results add a new gene to the dorsalisation signalling pathway in the limb. Moreover, they implicate the Eph receptor family in the patterning and innervation of the developing limb, extending its role in axon pathfinding to the distal periphery.  相似文献   

11.
12.
In the chick limb bud, the zone of polarizing activity controls limb patterning along the anteroposterior and proximodistal axes. Since retinoic acid can induce ectopic polarizing activity, we examined whether this molecule plays a role in the establishment of the endogenous zone of polarizing activity. Grafts of wing bud mesenchyme treated with physiologic doses of retinoic acid had weak polarizing activity but inclusion of a retinoic acid-exposed apical ectodermal ridge or of prospective wing bud ectoderm evoked strong polarizing activity. Likewise, polarizing activity of prospective wing mesenchyme was markedly enhanced by co-grafting either a retinoic acid-exposed apical ectodermal ridge or ectoderm from the wing region. This equivalence of ectoderm-mesenchyme interactions required for the establishment of polarizing activity in retinoic acid-treated wing buds and in prospective wing tissue, suggests a role of retinoic acid in the establishment of the zone of polarizing activity. We found that prospective wing bud tissue is a high-point of retinoic acid synthesis. Furthermore, retinoid receptor-specific antagonists blocked limb morphogenesis and down-regulated a polarizing signal, sonic hedgehog. Limb agenesis was reversed when antagonist-exposed wing buds were treated with retinoic acid. Our results demonstrate a role of retinoic acid in the establishment of the endogenous zone of polarizing activity.  相似文献   

13.
Appendage formation in insects and vertebrates depends upon signals from both the anterior-posterior and dorsal-ventral (DV) axes. In Drosophila, wing formation is organized symmetrically around the DV boundary of the growing wing imaginal disc and requires interactions between dorsal and ventral cells. Compartmentalization of the wing disc, dorsal cell behavior, and the expression of two dorsally expressed putative signaling molecules, fringe (fng) and Serrate (Ser), are regulated by the apterous selector gene. Here, we demonstrate that fng and Ser have distinct roles in a novel cell recognition and signal induction process. fng serves as a boundary-determining molecule such that Ser is induced wherever cells expressing fng and cells not expressing fng are juxtaposed. Ser in turn triggers the expression of genes involved in wing growth and patterning on both sides of the DV boundary.  相似文献   

14.
15.
Bone morphogenetic protein 1 (BMP1) is a metalloproteinase closely related to Drosophila Tolloid (Tld). Tld regulates dorsoventral patterning in early Drosophila embryos by enhancing the activity of Dpp, a member of the TGF-beta family most closely related to BMP2 and BMP4. In Xenopus BMP4 appears to play an essential role in dorsoventral patterning, promoting the development of ventral fates during gastrula stages. To determine if BMP1 has a role in regulating the activity of BMP4, we have isolated cDNAs for Xenopus BMP1 and a novel closely related gene that we have called xolloid (xld). Whereas xbmp1 is uniformly expressed at all stages tested, the initial uniform expression of xld becomes localized to two posterior ectodermal patches flanking the neural plate and later to the inner ectoderm of the developing tailbud. xld is also expressed in dorsal regions of the brain during tailbud stages and is especially abundant in the ventricular layer of the dorsal hindbrain caudal to the otic vesicle. Overexpression of either gene inhibits the development of dorsoanterior structures in whole embryos and ventralizes activin-induced dorsal mesoderm in animal caps. Since ventralization of activin-induced animal caps can be blocked by coinjecting a dominant-inhibitory receptor for BMP2 and BMP4, we suggest a role for BMP1 and Xld in regulating the ventralizing activity of these molecules.  相似文献   

16.
Transplantation and ablation experiments have led to the generalization that in insects the mesoderm is naive, and that pattern is imposed upon it by the ectoderm. This has been demonstrated directly by mosaic analysis for the case of one muscle in Drosophila. The unique character of this muscle depends on the activity of sex-determining and homeotic genes, not in the muscle itself, but in the nerve that innervates it. Indirect evidence suggests, however, that homeotic genes specify some aspects of mesoderm patterning autonomously. Homeotic genes are expressed in the mesoderm, and are regulated in a segment-specific pattern analogous to, but different from, that seen in the ectoderm. Moreover, the effects of homeotic mutations on the muscles do not always mirror transformations seen in the epidermis. Here we examine this problem directly, by expressing homeotic genes ectopically in the mesoderm without altering their expression in the overlying ectoderm. We find that the pattern of adult muscle precursor cells characteristic of the thorax can be converted to that seen in the abdomen by expressing the homeotic gene abdominal-A specifically in the mesoderm.  相似文献   

17.
18.
An early step in the development of vertebrae, ribs, muscle, and dermis is the differentiation of the somitic mesoderm into dermomyotome dorsally and sclerotome ventrally. To analyze this process, we have developed an in vitro assay for somitic mesoderm differentiation. We show that sclerotomal markers can be induced by a diffusible factor secreted by notochord and floor plate and that heterologous cells expressing Sonic hedgehog (shh/vhh-1) mimic this effect. In contrast, expression of dermomyotomal markers can be caused by a contact-dependent signal from surface ectoderm and a diffusible signal from dorsal neural tube. Our results extend previous studies by suggesting that dorsoventral patterning of somites involves the coordinate action of multiple dorsalizing and ventralizing signals and that a diffusible form of Shh/Vhh-1 mediates sclerotome induction.  相似文献   

19.
Skeletal patterning and morphogenesis in the developing limb are thought to be regulated by instructive factors and cues from the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the dorsal ectoderm. However, the activities of the ZPA and AER dwindle early in embryogenesis and soon after ceases, when in fact the proximal skeletal elements are still rudimentary in structure and the more distal ones are yet to become recognizable. Thus, we asked whether the chondrocytes emerging within each mesenchymal condensation may themselves start expressing properties similar to those of ZPA and/or AER and, in so doing, may bring skeletal development to completion. Indeed, we found that the cartilaginous, but not precartilaginous, tissues in early chick limbs possess ZPA-like properties. They expressed an endogenous factor related to Sonic hedgehog (Shh), most likely Indian hedgehog (Ihh), and when fragments were grafted to the anterior margin of host stage 16-20 chick wing buds, they induced supernumerary skeletal elements (polarizing activity). The acquisition of polarizing activity by the cartilaginous structures followed clear proximo-to-distal and posterior-to-anterior routes. Thus, (1) stage 25 cartilaginous humerus had polarizing activity while stage 25 prospective radius did not, (2) posteriorly-located stage 29 ulna had stronger activity than anteriorly-located stage 29 radius, and (3) ulna's diaphysis had stronger activity at stage 29 than 31 while radius's diaphysis was stronger at stage 31 than 29. Prior to inducing extra digit formation, the cartilaginous grafts induced Hoxd-12 and Hoxd-13 gene expression in adjacent competent mesenchymal tissue. Strikingly, the cartilaginous grafts activity also expression of Shh and polarizing activity in adjacent mesenchyme, which ZPA grafts cannot do; thus, the cartilaginous structures displayed activities "upstream" of those of the ZPA. The results support our hypothesis that chondrocytes may themselves direct skeletal morphogenesis. In so doing and as a result of their inductive activities, the cells may also have an important role in the completion of limb patterning and morphogenesis.  相似文献   

20.
This review starts from the classical standpoint that there are at least two separable processes acting with respect to axis formation and tissue specification in the early Xenopus embryo: a UV-insensitive event establishing a postgastrula embryo consisting of three concentric germ layers, ectoderm, mesoderm and endoderm, all of a ventral character; and a UV-sensitive event producing tissue of a dorsal type, including somites, notochord and neural tissue, and concomitantly establishing the dorsoventral and anteroposterior axes. The experimental evidence suggesting the molecular basis of the dorsal and ventral pathways is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号