共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
采用水蒸汽活化法制备了具有不同比表面积的PAN基活性炭纤维,并对其孔结构进行了较为详细的分析,结果表明,PAN基活性炭纤维孔结构以直径小于10A的微孔为主,孔径分布窄,D-R,D-A方程对其有良好的适用性。H-K法分析结果与D-R,D-A方程结果相一致。 相似文献
3.
4.
磷酸活化粘胶基活性炭纤维的研究Ⅱ.磷酸活化粘胶基活性炭纤维的结构研究 总被引:2,自引:0,他引:2
采用吸附仪、元素分析仪、X-射线光电子能谱仪对所制备的磷酸活化粘胶基活性炭纤维( V ACF-P)的孔结构及化学结构进行表征 ,结果表明 :V ACF -P的孔结构是以微孔为主 ,大多数孔的孔径小于 2 nm ,碳化活化温度和活化剂磷酸的浓度变化时 ,孔径分布有所改变 ,产品的含碳量较低 ,约68%~ 84% ,纤维含大量表面含氧基团 ,且碳化活化温度越低的纤维含氧基团越多 ,磷原子主要以多聚磷氧化合物的形式存在。 相似文献
5.
以脱脂棉、天丝和剑麻为原料,KOH溶液为活化剂,通过炭化、活化制备活性炭纤维(ACFs),研究炭化温度和碱碳比对ACFs物理化学性质的影响,并借助比表面积测试(BET)、X射线衍射分析(XRD)等手段对纤维进行表征.结果表明,3种原料炭化致孔的难易程度为:脱脂棉>剑麻>天丝.当炭化温度为700℃时,炭化材料的比表面积分... 相似文献
6.
7.
8.
炭化温度对酚醛基活性炭纤维孔结构的影响 总被引:2,自引:0,他引:2
从酚醛纤维出发,经过炭化和KOH活化制备了酚醛基活性炭纤维(PACF),并对不同温度下炭化样品的比表面积、孔结构以及表面形态之间的关系进行了探讨。采用氮气(77K)吸附法测定PACF活性炭纤维的孔结构和比表面积。结果表明:用KOH在900℃对低于500℃炭化纤维进行活化,不能保持纤维形态,只能得到碳收率低、比表面积高的粉状物,而高于500℃炭化样品则可保持纤维形态。随着炭化温度的升高,所有样品的整体孔径分布范围基本相同,而平均孔径,比表面积和孔容逐渐缩小。 相似文献
9.
添加剂种类对活性炭纤维的中孔结构的影响 总被引:7,自引:0,他引:7
纺制了含不同种类添加剂(金属氧化物,聚合物及炭素颗粒)的PAN原丝,经预氧化,炭化活化,制得了中孔含量不同的活性炭纤维,考察了添加剂种类对活性炭纤维中孔结构的影响,发现金属氧化物TiO2,MgO,聚合物PVA,PVAc及炭黑均可明显提高最终活性炭纤维的中孔率。 相似文献
10.
11.
12.
不同活化剂对石油焦基活性炭孔结构的影响 总被引:5,自引:1,他引:4
以石油焦为原料 ,Na OH,KOH和 Na2 CO3 为活化剂制备活性炭 ,采用氮气吸附考察了不同活化剂对活性炭的比表面积、中孔和微孔孔径分布、孔容积及平均孔径等孔结构的影响 .结果表明 :KOH活化制备的活性炭包含 1 nm的微孔和 4nm的中孔 ,总孔容 0 .648cm3 /g,比表面积大 ;Na OH制备的活性炭以 1 nm的微孔为主 ,占总孔容 ( 0 .1 65 cm3 /g)的 98% ,平均孔径 1 .83nm;Na2 CO3 制备的活性炭以 4nm的中孔为主 ,占总孔容 ( 0 .1 43cm3 /g)的 68.5 % ,平均孔径 3.42 nm,比表面积小 .3种样品的孔径都呈现出多峰分布特征 .KOH和 Na2 CO3 活化制备的活性炭的 N2 吸附脱附曲线属于 型 ,Na OH活化制备的活性炭吸附脱附曲线属于 型 . 相似文献
13.
14.
剑麻基活性炭纤维的制备及其碳化活化动力学 总被引:4,自引:1,他引:4
研究了剑麻纤维碳化活化反应动力学。结果表明,碳化活化反应符合一级动力学规律,反应速度与活性炭纤维的质量成正比例关系,并且随反应温度的升高,碳化活化反应速度常数也相应提高,反应速度常数随温度的变化关系符合阿累尼乌斯规律,剑麻基活性炭纤维的碳化活化反应的表观活化能为124kJ/mol。 相似文献
15.
16.
17.
以聚丙烯腈预氧毡为原料,使用水为活化剂制得活性炭纤维。20℃时,考察了活性炭纤维对碘、苯酚和亚甲基蓝的吸附性能。并与颗粒活性炭的吸附性能作了比较,结果表明:活性炭纤维的吸附能力比颗粒活性炭的吸附能力强,吸附速率快2~5倍,表面分析表明:活性炭纤维表面含有许多种官能团。并有较好的热稳定性。 相似文献