首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
《机械》2020,(6)
正了考虑一系钢弹簧为柔性的刚柔耦合车辆系统动力学模型,分析了车轮多边形对一系钢弹簧疲劳寿命的影响。主要结论如下:(1)在六阶车轮多边形的激励下,当v=90 km/h时,车轮多边形的通过频率与一系钢弹簧的固有频率接近,引发弹簧共振,导致弹簧振动剧烈,动应力幅值增大导致疲劳断裂,是造成弹簧异常断裂的重要原因。(2)相同的车轮多边形阶次条件下,随着车速的提高,弹簧寿命总体逐渐降低,且在车轮多边形通过频率与一系钢弹簧固有频率接近  相似文献   

2.
地铁车辆车轮多边形化形成原因分析   总被引:9,自引:1,他引:8  
针对地铁车辆车轮多边形化问题,探讨分析车轮多边形化形成原因。提出车轮多边形化是由车轮滚动多周的振动所形成的这一创新观点,并分析车轮多边形化的顶点相位角、主振频率与运行速度之间的关系。以某直线电动机地铁车辆为例,基于建立的多体动力学模型,研究各速度下轮轨垂向力的主导频率,分析易产生车轮9边形化的速度及主导频率特性,指出在72~80 km/h的速度范围内,该直线电动机地铁车辆有形成车轮9边形化的可能。以72 km/h和80 km/h为例,给出此速度下的轮轨垂向力及其主导频率、前转向架直线电动机垂向振动加速度及其主振频率,结果表明两种速度下主导频率分别为39.08 Hz和43.48 Hz的振动有形成车轮9边形化的趋势。指出各速度下的相位角变化,并给出车轮9边形化的示意图。  相似文献   

3.
林凤涛  王瑞涛 《机电工程》2020,37(8):882-887
针对高速动车组车轮多边形磨耗会加剧轮轨间的相互作用,导致轮轨间异常伤损的问题,建立了车辆轮对的有限元模型,并利用Lancos法对车轮进行了模态分析。建立了考虑轮对柔性的车辆刚柔耦合动力学模型,研究了车轮多边形磨耗对轮轨力和轴箱加速度的影响,分析了不同速度级下的不同幅值、阶次的车轮多边形磨耗的动力学响应。仿真及研究结果表明:随着车轮多边形磨耗的幅值增加,轮轨垂向力和轴箱垂向加速度均有增加,在18、23多边形阶次下,车轮多边形磨耗引发的激扰频率区间为300 Hz~350 Hz、500 Hz~550 Hz和680 Hz~750 Hz,该频率区间与柔性轮对系统模态接近引起谐振,导致在上述区间段轮轨力与振动加速度幅值显著增加。  相似文献   

4.
针对高速动车组在运营过程中出现的垂向止挡异常振动,且个别存在明显断裂裂纹的典型振动问题,基于现场车轮粗糙度与振动响应同步测试,分析了镟修前后的车轮非圆特征及其对轴箱及垂向止挡振动特性的影响;采用试验与计算相结合的垂向止挡模态分析,确定了垂向止挡的模态特性,据此分析了高速动车组垂向止挡异常振动的成因。结果表明,测试的高速列车动车组车轮存在较为明显的25~27阶多边形,在192 km/h运营速度下,会对轴箱和垂向止挡形成显著的515Hz频率振动激励。而垂向止挡一阶弯曲模态频率也为510 Hz,且其模态应变最显著区域与断裂裂纹位置一致。由此可判断垂向止挡异常振动是车轮多边形激励引起垂向止挡结构共振所致。车轮镟修可有效减缓或抑制其异常振动,相关研究可为高速动车组减振降噪提供参考。  相似文献   

5.
对某动车组空心车轴进行了受力分析,计算了作用在车轴各个截面上的最大弯曲应力幅,依据EN 13104和EN13261标准,对几个主要截面处该车轴疲劳强度进行了校核,结果表明车轴轮座内侧3/4截面处疲劳强度安全系数为1.22。建立了某轮对采用过盈配合的车轴在承载状态下紧急制动时的轮对有限元静力学计算模型,计算了不同压装过盈量下的等效应力,结果表明压装过盈量为0.248mm且紧急制动时时,车轮最大等效应力接近其许用应力。  相似文献   

6.
首先基于刚柔耦合理论,考虑了轮对、轴箱和构架的柔性,建立了动车组车辆刚柔耦合动力学模型;然后又通过模态叠加法建立了轨道的动力学模型,从而发展成车线-刚柔耦合动力学模型。随后,在车轮上施加20阶理想多边形,研究了300 km/h下轴箱垂向加速度、轮轨垂向力和轮轴弯曲应力的响应,结果表明:轴箱垂向加速度和轮轨垂向力以577 Hz的多边形通过频率波动,而轮轴弯曲应力主频为28.8Hz的车轮转频,在此基础上,叠加了多边形的通过频率,因此多边形的通过频率577 Hz会分岔为548 Hz和605 Hz两个频率。通过对不同速度和不同多边形幅值下车辆响应的研究可以得到以下结论:随着速度和多边形幅值的增大,轮轨力最大值总体上呈现增大趋势。从轮轨力最小值上看:速度越大,多边形幅值越大,则更容易发生轮轨分离。当车轮多边形通过频率与轮轨耦合共振频率耦合,会引起轮轨垂向力的增大。当与轴箱自身模态频率耦合时会导致轴箱加速度的变大。轮轴应力则主要受到轮轨耦合共振模态以及轮轴自身的弯曲模态影响。  相似文献   

7.
针对列车车轮多边形磨耗问题广泛存在于轨道交通运输领域,会导致车辆/轨道系统产生高频的振动冲击,严重影响车辆和轨道系统零部件的使用寿命,危及行车安全这一问题,调查了大量车轮的多边形磨耗情况并进行统计分析,掌握了高速列车车轮多边形磨耗问题的现状和特点。以18~20阶多边形磨耗车辆为例,通过理论研究和试验分析(试验分析包括车辆系统振动特性测试和转向架模态特性测试),对车轮多边形磨耗的根本原因及诱导因素进行研究。研究发现,轮轨系统在580 Hz频率附近存在固有模态是导致车辆发生18~20阶多边形磨耗的根本原因,轮轨表面的各种不平顺能激发或者加剧轮轨系统在580 Hz频率附近的模态共振,从而诱发车轮多边形磨耗的产生。该结果可为高速列车车轮多边形磨耗问题的防止和进一步研究提供参考。  相似文献   

8.
高速铁路长时间运营,经常发生车轮多边形磨耗,并伴随钢轨波磨,两种损伤形式对列车运行特性的综合影响有待深入研究。采用简谐函数法建立车轮多边形模型,设计余弦函数描述钢轨不平顺磨耗,建立列车刚柔耦合动力学模型,分析不同车轮多边形及钢轨波磨综合磨耗情况下,列车的动力学性能的影响,并提出轮轨综合磨耗的安全限值。结果表明:在轮轨综合磨耗激扰下对列车的动力学性能的影响更为剧烈;列车运行速度为300 km/h下,轮轨垂向力增长幅值最大达到30%,车轮与25阶振型模态产生共振;车轮多边形比钢轨波磨对垂向力的影响更大;不同多边形阶次、幅值下,轮轨综合磨耗工况对轴箱、轮对以及钢轨垂向振动加速度影响更大。车轮多边形安全限值更小,多边形幅值限值平均降低了25.9%,在轮轨综合磨耗作用下更易超出限值;当速度为300 km/h,提出了钢轨波磨和车轮多边形阶次在一定范围内的安全限值。  相似文献   

9.
根据车体的结构属性和质量分布将其考虑为多段变截面欧拉梁,建立包含车体一阶垂弯模态的车辆垂向动力学模型,研究车体一阶垂弯振型的节点位置对高速列车振动舒适度的影响,提出改善车体弹性振动的措施。基于变截面欧拉梁模型分析车体各截面的质量和抗弯刚度分布对模态振型的影响,发现不同截面之间的抗弯刚度和质量分布对整体模态振型影响显著,提高车体中部结构的抗弯刚度并减小其质量,可以增大节点间距和提高模态频率,而传统均直等截面梁模型则不能准确描述振型的幅值和节点位置。采用频域分析方法计算车辆在轨道随机激励下的振动响应,将车体垂弯振型节点调整到转向架二系上方附近时,车体的弹性振动水平显著降低,在车速为300 km/h时车辆舒适度指标可降低50%。  相似文献   

10.
国内现有某高速列车在运营一段时间后,轴箱端盖的连接螺栓经常发生松动现象。为寻找轴箱端盖螺栓松动的原因,分别对车轮表面磨耗状态及列车关键部件振动特性进行测试,系统地分析轴箱显著频率振动与车轮非圆化磨耗之间的相关性;根据车轮多边形及关键部件的振动特征,对轴箱端盖和一系减振器进行模态测试,对轮对和构架进行有限元模态分析,并通过观察轴箱振动显著频段内轴箱端盖变形,初步分析了轴箱端盖螺栓易松动的原因。结论如下:轴箱振动能量主要集中在314~372 Hz和514~600 Hz的频率范围内,该频率段分别对应车轮的11~13阶多边形磨耗和18~21阶多边形磨耗产生的激励频率范围。轴箱在314~372 Hz的振动显著频率与减振器在221~436 Hz的固有模态群相互耦合,轮对和构架在514~600 Hz的固有模态群相互耦合,这两种模态耦合关系是导致轴箱端盖异常振动,后期发展为螺栓松动的主要原因。  相似文献   

11.
车轮多边形是高速列车运行过程中常见的磨耗现象,该现象使轮轨作用力增大,齿轮箱持续异常振动,并会影响其疲劳寿命。为研究高速列车车轮多边形对齿轮箱疲劳寿命的影响,建立了含有齿轮箱支撑轴承的驱动系统和柔性齿轮箱的刚柔耦合整车动力学模型,采用数值仿真分析方法,通过分析不同车轮多边形幅值下轮轨垂向力和齿轮箱垂向振动加速度确定极端工况,对该工况下的齿轮箱进行应力分析并确定危险点,进而分析这些点的疲劳寿命。研究发现:列车在350 km/h三阶0.1 mm车轮多边形极端工况时,轮轨垂向力及齿轮箱垂向加速度明显增大,齿轮箱剧烈振动,此时齿轮箱多处出现应力集中,存在多个危险点。其中齿轮箱输出轴轴承端支撑筋处应力最大,该危险点疲劳寿命只能达到256万km,远小于1200万km的正常寿命。因此,在高速列车实际运营中要高度重视车轮多边形对齿轮箱疲劳寿命带来的影响,可通过车轮镟修来降低车轮多边形对齿轮箱疲劳寿命的影响。  相似文献   

12.
利用ANSYS/LS-DYNA建立带车轮多边形的三维轮轨滚动接触疲劳裂纹扩展模型,将真实轮轨间瞬态滚滑和高频动力作用考虑在内,分析车轮多边形和连续钢轨裂纹造成的瞬态接触载荷对钢轨裂纹动态扩展行为的影响。速度250 km/h牵引工况的结果表明:零间隙多裂纹对法向轮轨力的影响甚微,但会造成切向轮轨力不可忽略的波动;车轮多边形会造成法向和切向轮轨力显著的周期性波动,如0. 1 mm波深23阶多边形会使得各裂纹面最大法向和切向接触力较圆顺工况分别增长19. 6%、34. 1%;任一裂纹面内法向和切向接触应力在接触斑滚过的0. 22 ms内发生了复杂的瞬态变化,进一步导致各裂纹的最大裂尖应力场强度因子的周期性波动,影响裂纹动态扩展行为;随着车轮多边形波深和阶数的增加,上述各种波动的幅度均会变大,加速裂纹扩展。  相似文献   

13.
为了优化设备舱底板的振动疲劳特性,建立了刚柔耦合多体动力学模型,分析了在武广谱载荷谱的线路条件激励下,底板关键位置的振动和车速的关系。研究发现,车辆设备舱底板的振动总体趋势是随着速度的增加而增加,但是在250km/h的时候,纵向振动幅值会比300km/h的要大。根据动力学仿真结果提取出载荷的大小,进行了有限元强度分析,得到了底板的最大应力和开孔位置的最大应力。滚动台试验数据和仿真结果一致,验证了模型的正确性。最后对底板进行了优化,加厚设备舱底板的厚度。对比发现,优化后的整体最大应力由8.78 MPa减小到4.79MPa,开孔处的最大应力由1.65MPa减小到0.95MPa,底板的强度性能得到了大幅度提高。  相似文献   

14.
针对大飞机上常用的四轮并列式起落架,给出了飞机在着陆准稳态阶段,其起落架焊接主起轮轴的受载数学模型。以伊尔-76飞机为研究对象,采用有限元分析软件ANSYS,模拟了其机轮着陆过程中焊接主起轮轴受力状况。结果表明,主起轮轴上两道焊缝处应力最大,断裂几率最高,最先着陆机轮的轴颈处由于受到循环载荷作用,易发生疲劳断裂。  相似文献   

15.
考虑轴箱轴承表面波纹度的高速车辆振动特性分析   总被引:3,自引:0,他引:3  
采用SIMPACK动力学软件,建立一高速车辆出现轴箱轴承表面波纹度缺陷的动力学计算模型,将轴承假设为只有外圈和内圈两者之间的相互作用,轴承中的滚子直接等效成若干个力元,分别考虑轴承的内、外圈以及滚子表面波纹度对车辆振动特性的影响。仿真结果表明:当轴承出现波纹度缺陷时,轴箱振动加速度会增大,而构架的加速度变化不大;对于外圈表面波纹度,会在特定频率及其倍频处出现峰值,且当纹度波数等于或接近滚子数目相或其倍数关系时,轴箱会出现严重的振动;对于内圈表面波纹度,当波纹度数N_w≠iZ±1且N_w≠iZ±1(其中i为正整数)时,在所仿真的波数下可能会出现多种基频及其倍频成分,否则只会产生特定的基频及其倍频成分;对于滚子表面波纹度,当滚子波纹度数目为偶数时,只会出现特定的基频及其倍频成分,且在特征频率旁边存在着调制边带;随着滚子波纹度数目的变化,三种情况下的轴箱振动加速度幅值会在波纹度数目等于滚子数目处产生峰值点,且随着波纹度幅值的增加,三种情况下的轴箱的振动均变得越来越剧烈。  相似文献   

16.
车轮磨耗下车下悬吊系统振动特性研究   总被引:2,自引:1,他引:1  
为研究高速动车组车下悬吊系统在车轮磨耗下的振动特性演变规律,建立考虑车体弹性振动和车下悬吊设备的刚柔耦合动力学模型,分析一个镟轮周期内车轮磨耗对车体和车下悬吊设备振动响应的影响。研究结果表明:车轮磨耗主要影响车下悬吊系统的横向振动,对垂向振动影响较小;在前5万km运营里程下,车体和车下设备的振动特性基本保持不变,随着里程的增加,车体和悬吊设备的振动特性不断恶化,当运营里程达到19.1万km时,车体和悬吊设备的振动加速度幅值达到了新轮下的2倍;车辆运行速度不高于140 km/h时,车轮磨耗对车体和设备的振动影响甚微,随着速度的增加,车轮磨耗对车体和悬吊设备的影响逐渐增大;通过选取合理的横向悬吊刚度可以有效抑制车轮磨耗对悬吊系统的影响,其取值范围在0.7~1.5 MN/m内比较合适。  相似文献   

17.
拖车转向架气动噪声数值研究   总被引:1,自引:0,他引:1  
拖车转向架作为高速列车最主要的气动噪声声源,由于其结构复杂、细小部件多、周围涡流分布紊乱等,对拖车转向架的气动力和气动噪声认识甚少。采用定常RNG k-ε湍流模型与宽频带噪声源模型对拖车转向架的气动阻力、气动升力和气动噪声声源进行初步探讨,并结合非定常大涡模拟与Lighthill声学比拟理论对其进行远场气动噪声分析。计算结果表明:较大漩涡存在于空气弹簧与抗蛇形减振器之间、迎风侧轴箱与构架侧梁外侧的邻近区域;气动阻力、气动升力与运行速度的平方成正比关系,占总气动阻力最大的部件依次为构架(24.02%)、轮对(19.30%)、枕梁(18.08%)、制动闸片、抗侧滚扭杆、制动盘、构架支架和空气弹簧,枕梁的气动升力最大且占总气动升力的157.88%左右;轮对、构架、制动闸片、制动盘、枕梁、垂向减振器、抗侧滚扭杆等凸起部位的迎风侧表面为拖车转向架的气动噪声源,且构架对拖车转向架总噪声的贡献量最多,其次为轮对,然后为盘形制动装置和枕梁,抗侧滚扭杆、垂向减振器、空气弹簧和横向减振器对总噪声的贡献量较少。拖车转向架远场气动噪声是宽频噪声,具有噪声指向性、衰减性和幅值特性等,主要能量集中在28~56 k Hz频率范围内,中心频率为50 Hz、100 Hz、160 Hz在低频部分能量较大且分布规律不随运行速度的改变而变化。  相似文献   

18.
针对高速列车车轮失圆识别难以兼顾效率与精度问题,提出一种基于轴箱振动与动力学模型的高速列车车轮失圆状态智能识别方法。首先,利用静态检测设备采集车轮非圆原始数据,提出一种数据增强技术构建车轮非圆增强数据集。其次,将增强数据集输入至高速列车车辆—轨道耦合动力学模型,获取车轮不同失圆状态下轴箱振动样本集。最后,通过构建恰当结构与配置参数的一维卷积神经网络(1-dimensional convolutional neural network,1-DCNN),可对轴箱振动信号进行自适应特征提取,实现对车轮失圆状态的智能识别分类。结果表明:提出的车轮失圆状态智能识别方法能实现正常车轮、多边形车轮、擦伤车轮、随机非圆化车轮与局部缺陷车轮5类车轮失圆状态的智能分类,准确率达99.2%(标准差为0.05),且单个样本平均识别耗时为0.4 ms。结合现场试验,所提方法对实测轴箱振动具有较好识别能力,测试精度为95%。与经典的SVM和BP神经网络相比,1-DCNN模型具有更高的识别准确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号