共查询到18条相似文献,搜索用时 46 毫秒
1.
建立角接触球轴承的几何和数学模型,通过求解考虑热效应的Reynolds方程,对角接触球轴承的弹流润滑问题进行数值模拟,得到角接触球轴承的点接触热弹性流体动力润滑完全数值解,分析了考虑热效应时角接触球轴承的几何参数(接触角、吻合度、径向游隙等)、速度及载荷对压力和膜厚的影响。结果表明:设计角接触球轴承时,尽量提高内圈与球体在轴向方向的吻合度以有利于润滑油膜的形成,在轴承整体参数不变的情况下选择较小的节圆直径,可改善轴承润滑;从弹流润滑角度讲,选择合适的球体直径可使压力、膜厚、温度处于合适范围内,改善轴承工作情况;适度提高轴承的运转速度将有利于润滑油膜的形成,从而延长轴承使用寿命。 相似文献
2.
3.
建立角接触球轴承的热弹流润滑数学模型,通过求解考虑热效应的Reynolds方程,对润滑条件下的角接触球轴承在考虑表面粗糙度时的弹流润滑问题进行数值模拟。在缺乏实测数据的情况下,采用了涉及轴承滚道和滚球体面上的余弦粗糙波数学模型,分析考虑热效应的角接触球轴承的表面粗糙度对压力和膜厚的影响。结果表明:考虑x和y方向的粗糙度函数可以更好地模拟轴承滚道及滚球体表面的形貌特征,由此计算出的压力和油膜分布更贴近工程实际;考虑两方向的粗糙度后,压力和油膜分布与单方向粗糙度有所不同,增大粗糙度波长和减少波幅有利于减小压力,增大膜厚,改善润滑。 相似文献
4.
线接触弹流润滑综合数值分析 总被引:2,自引:2,他引:2
应用多重网格法和多重网格积分法数值求解rNewton流体和Ree-Eyring流体线接触等温和热弹流润滑问题,分析了滑滚比对摩擦因数的影响,指出了润滑油的流变性和热效应对线接触弹流润滑油膜粘度的影响,以及不同滑滚比时压力、膜厚和温度的分布规律。结果表明:等温润滑时的摩擦因数随着滑滚比的增加而增加,热弹流润滑时的摩擦因数随着滑滚比的增加先增加后减小,热效应和非牛顿流体的剪稀作用均会使润滑油的等效粘度降低,从而影响摩擦因数;热效应的存在使油膜变薄,且在所讨论的工况条件下Newton流体的膜厚比Ree-Eyring流体的稍薄,热效应使第二压力峰变矮,且Ree-Eyring流体的第二压力峰矮于Newton流体的第二压力峰;纯滚动时,Ree-Eyring流体的温度比Newton流体的温度高,有滑滚比时,Newton流体的温度比Ree-Eyring流体的温度高,且油膜的温度随滑滚比的增加而增加。 相似文献
5.
在弹流润滑理论中,用于高弹性模量材料(如金属)副的Dowson膜厚公式和用于低模量(如橡胶)副Herrebrugh膜厚公式已经得到试验和工程实际的证实,获得普遍的认可.但中等弹性模量(如钢——高分子复合材料)副是否可采用这些公式进行膜厚计算,值得探讨.高模量和低模量的膜厚计算的根本区别在于压粘效应和弹性效应的影响程度不同.Dowson膜厚公式所涉及的材料综合弹性模量E′在10~5MPa数量级,其无量钢材料参数G=2500-5000左右,压粘效应异常显著;Herrebrugh膜厚公式所涉及的材料综合弹性模量E’在10MPa数量级,接触区压力 相似文献
6.
建立陶瓷球轴承热弹流润滑的数学模型,利用多重网格法和逐列扫描法,得到陶瓷球轴承的点接触热弹性流体动力润滑完全数值解,并与普通轴承计算结果进行比较。结果表明:转速与载荷会对陶瓷轴承的接触区的压力、膜厚、温度产生影响,其中随着转速的增加,最小膜厚增加,摩擦因数减小,滚动体表面温度下降,而随着载荷的增加,最小膜厚减小,摩擦因数增大,滚动体表面温度上升;在相同的工况参数下,陶瓷球轴承的油膜压力低于普通轴承,膜厚高于普通轴承,轴承内圈、滚动体、中层油膜的温升小于钢质轴承,因而陶瓷轴承的润滑性能更好,使用寿命更长。 相似文献
7.
8.
基于现代弹性流体动力润滑理论和弹性力学理论,建立了高速圆柱滚子轴承非等温时变的弹流分析模型、轴承套圈与滚动体接触时接触体内应力分析仿真模型。用数值分析方法对模型求解,并用Tecplot软件对轴承接触体内应力分布进行仿真。仿真结果分析表明,弹性流体动力润滑中轴承速度及其所受载荷是影响轴承接触体内部应力分布的主要因素;在不考虑其它因素情况下,接触区内中部靠接近表面的区域接触应力最高,改善接触体表面压力,可以有效改善接触体内等效应力分布。 相似文献
9.
10.
11.
基于Ree—Eyring流变模型,建立线接触热弹流润滑方程,通过数值计算得出了载荷参数、速度参数、材料参数和滑滚比对于二次压力峰、最小油膜厚度和最大油膜温度的重要影响。 相似文献
12.
13.
为了研究锥齿轮的热弹流润滑机理,基于弹性流体动力润滑理论,建立有限长线接触模型,研究了直齿圆锥齿轮热弹流润滑特性。首先,将直齿圆锥齿轮热弹流问题近似等效为两同向圆锥滚子的准稳态热弹流润滑问题,应用多重网格法和逐列扫描法求解了锥齿轮整个接触线上的油膜压力、油膜厚度及固体和油膜中层的温度。结果表明,直齿圆锥齿轮沿齿宽方向上各点的压力、膜厚、温度均不相同。其中,小端的油膜压力略大于大端的油膜压力;小端的油膜厚度小于大端的油膜厚度;沿齿宽方向的温度分布差异较为明显,油膜中层的温度大于两固体表面的温度。该研究为直齿圆锥齿轮的润滑设计提供一定的理论依据。 相似文献
14.
A computer package has been developed and applied to solve line contact problems of elastohydrodynamic lubrication. The solutions computed by the package are maintained and are indexed by two dimensionless parameters, α and λ, within a database. Power law surfaces are fitted to the minimum film thickness and maximum pressure for each solution and are compared to interpolated surfaces of the same data, to film thickness measurements and to equations published previously in the literature. 相似文献
15.
16.
This paper presents the results of a transient analysis of elastohydrodynamic lubrication (EHL) of two parallel cylinders in line contact with a non-Newtonian lubricant under oscillatory motion. Effects of the transverse harmonic surface roughness are also investigated in the numerical simulation. The time-dependent Reynolds equation uses a power law model for viscosity. The simultaneous system of modified Reynolds equation and elasticity equation with initial conditions was solved using the multigrid, multilevel method with full approximation technique. The film thickness and the pressure profiles were determined for smooth and rough surfaces in the oscillatory EHL conjunctions, and the film thickness predictions were verified experimentally. For an increase in the applied load on the cylinders or a decrease in the lubricant viscosity, there is a reduction in the minimum film thickness, as expected. The predicted film thickness for smooth surfaces is slightly higher than the film thickness obtained experimentally, owing primarily to cavitation that occurred in the experiments. The lubricant film under oscillatory motion becomes very thin near the ends of the contact when the velocity goes to zero as the motion direction changes, but a squeeze film effect keeps the fluid film thickness from decreasing to zero. This is especially true for surfaces of low elastic modulus. Harmonic surface roughness and the viscosity and power law index of the non-Newtonian lubricant all have significant effects on the film thickness and pressure profile between the cylinders under oscillatory motion. 相似文献
17.
In this work, the statistical asperity microcontact models in combination with the acoustic spring model and the load sharing concept are utilized to study the interfacial normal contact stiffness for a rough surface in line contact elastohydrodynamic lubrication (EHL). Two different statistical microcontact models of Greenwood and Williamson (GW) and Kogut and Etsion (KE) are employed to derive the normal contact stiffness expressions for a dry rough line contact considering the purely elastic contact and the multiple regimes elastic–elastoplastic–fully plastic contact, respectively. The liquid film stiffness is calculated based on the relationship between film thickness and bulk modulus of the lubricant. The lubricant film thickness equations are employed in conjunction with the load sharing concept and the empirical formulas for the maximum contact pressure in a dry rough contact are fitted for the GW model and the KE model, to evaluate the relationship between film thickness and motion velocity for the purely elastic GW microcontact model and the multiregime KE microcontact model, respectively. The comparison with experimental results shows that the KE model predicts closer total contact stiffness results than the GW model. The stiffness contributions from the solid asperity contact and lubricant film are obtained and effects of surface roughness, applied load, motion velocity, and type of lubricant on the normal contact stiffness are analyzed. 相似文献
18.
线接触脂润滑热弹性流体动力润滑数值分析 总被引:1,自引:0,他引:1
基于Ostwald模型建立的脂润滑控制方程与能量方程联合求解,通过压力-温度的循环来计算线接触脂润滑热弹性流体动力润滑数值解。分析了一般工况参数对润滑膜压力分布和润滑膜形状的影响,探讨了不同工况下热效应对脂润滑弹流数值解的影响。 相似文献