首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Solute hydrogen trapping has long been proposed as one of the mechanisms for hydrogen embrittlement in steel. It has been reported that the maximum hydrogen trapping energy of metallic solutes ranged from ?0.7 eV to ?0.9 eV. In this work, the mechanism of metal-H interaction in Cr-Mo steels was investigated with first principles calculations by modelling the binary alloy Fe-X (X = C, Si, Mn, Cr, Mo) system with reference to the chemical composition of Cr-Mo steels. The formation of hydrogen bonds in the case of H atoms located at different sites in Fe-X crystals was analyzed. Results indicated that various atomic doping had different roles in hydrogen effect in the steel, with C, Si and Mo doping making the solid solution of hydrogen in Fe crystals easier, while Mn and Cr doping was rather more difficult. In Fe-Mn and Fe-Cr crystals, the repulsion between Fe lattices was insignificant when H atoms were located in tetrahedral sites, which considerably reduced the binding energy in the crystal. When H atoms were dissolved into the crystal, the interatomic bonding interactions in Fe-X crystals were weakened, resulting in higher charge density fluctuations. The current work extends the understanding of H-atom diffusion and migration in steel from the microscopic scale to the atomic and electronic scales, which underpins the physics for tailoring chemical elements of bcc metals towards higher resistance to hydrogen embrittlement.  相似文献   

2.
Quantum mechanics postulates that the hydrogen atom has a stable ground state from which it can be promoted to excited states by capture of electromagnetic radiation, with the energy of all possible states given by En = ?13.598/n2 eV, in which n ≥ 1 is a positive integer. It has been previously proposed that the n = 1 state is not the true ground state, and that so-called hydrino states of lower energy can exist, which are characterized by fractional quantum numbers n = 1/p, in which 1 < p ≤ 137 is a limited integer. Electron transition to a hydrino state, H(1/p) is non-radiative and requires a quantized amount of energy, 2mE1 (m is an integer), to be transferred to a catalyst. Numerous putative hydrino-forming reactions have been previously explored and the products have been characterized by a range of analytical methods. Molecular hydrino has been predicted to be paramagnetic. Here, we give an account of an electron paramagnetic resonance (EPR) study of molecular hydrino H2(1/4) that was produced as gaseous inclusion in polymeric Ga(O)OH by a plasma reaction of atomic hydrogen with non-hydrogen bonded water as the catalyst. A sharp, complex, multi-line EPR spectrum is found, whose detailed properties prove to be consistent with predictions from hydrino theory. Molecular hydrino was also identified in gas chromatography as a compound faster than molecular hydrogen.  相似文献   

3.
Classical physical laws predict that atomic hydrogen may undergo a catalytic reaction with certain species, including itself, that can accept energy in integer multiples of the potential energy of atomic hydrogen, m·27.2 eV, wherein m is an integer. The predicted reaction involves a resonant, nonradiative energy transfer from otherwise stable atomic hydrogen to the catalyst capable of accepting the energy. The product is H(1/p), fractional Rydberg states of atomic hydrogen called “hydrino atoms,” wherein n = 1/2, 1/3, 1/4,…, 1/p (p ≤ 137 is an integer) replaces the well-known parameter n = integer in the Rydberg equation for hydrogen excited states. Each hydrino state also comprises an electron, a proton, and a photon, but the field contribution from the photon increases the binding rather than decreasing it corresponding to energy desorption rather than absorption. Since the potential energy of atomic hydrogen is 27.2 eV, two H atoms formed from H2 by collision with a third, hot H can act as a catalyst for this third H by accepting 2·27.2 eV from it. By the same mechanism, the collision of two hot H2 provide 3H to serve as a catalyst of 3·27.2 eV for the fourth. Following the energy transfer to the catalyst an intermediate is formed having the radius of the H atom and a central field of 3 and 4 times the central field of a proton, respectively, due to the contribution of the photon of each intermediate. The radius is predicted to decrease as the electron undergoes radial acceleration to a stable state having a radius that is 1/3 (m = 2) or 1/4 (m = 3) the radius of the uncatalyzed hydrogen atom with the further release of 54.4 eV and 122.4 eV of energy, respectively. This energy emitted as a characteristic EUV continuum with a cutoff at 22.8 nm and 10.1 nm, respectively, was observed from pulsed hydrogen discharges. The continua spectra directly and indirectly match significant celestial observations.  相似文献   

4.
Mechanisms of dopants (Li, Na, Mg, and Al) influence on hydrogen uptake in COF-108 were investigated by means of first principles. The binding energy of dopants in COF-108 was estimated from the first principles total energy calculations. All doped systems are shown positive binding energies with the metallic state of the dopant as the reference. The lowest binding energy of 0.518 eV appeared in the Na-doped system while a large amount of energy (2.692 eV) is required for Al to dope into COF-108. Electronic structure analysis shows that dopants Li and Na move the conduction band crossing the Fermi energy level and introduce weakly bonded electrons near the Fermi energy, which may polarize the hydrogen molecules. It is expectable that interaction between hydrogen molecule and the host COF-108 could be enhanced by the polarization of hydrogen molecule. Therefore the hydrogen uptake will be improved in the doped systems. Dopant Mg slightly reduces the band gap between the valence and conduction bands, but is hard to build chemical bonds with the host atoms owing to the less overlaps between the bond peaks of Mg and the COF-108. It hardly affects the electron distributions of the COF-108 and therefore weakly changes the chemical interactions between atoms in COF-108.  相似文献   

5.
In the ever growing demand of future energy resources, hydrogen production reaction has attracted much attention among the scientific community. In this work, we have investigated the hydrogen evolution reaction (HER) activity on an open-shell polyaromatic hydrocarbon (PAH), graphene quantum dot “triangulene” using first principles based density functional theory (DFT) by means of adsorption mechanism and electronic density of states calculations. The free energy calculated from the adsorption energy for graphene quantum dot (GQD) later guides us to foresee the best suitable catalyst among quantum dots. Triangulene provides better HER with hydrogen placed at top site with the adsorption energy as −0.264 eV. Further, we have studied platinum decorated triangulene for hydrogen storage. Three different sites on triangulene were considered for platinum atom adsorption namely top site of carbon (C) atom, hollow site of the hexagon carbon ring near triangulene's unpaired electron and bridge site over C–C bond. It is found that the platinum atom is more stable on the hollow site than top and bridge site. We have calculated the density of states (DOS), highest occupied molecular orbitals (HOMO), lowest unoccupied molecular orbitals (LUMO) and HOMO-LUMO gap of hydrogen molecule adsorbed platinum decorated triangulene. Our results show that the hydrogen molecule (H2) dissociates instinctively on all three considered sites of platinum decorated triangulene resulting in D-mode. The fundamental understanding of adsorption mechanism along with analyses of electronic properties will be important for further spillover mechanism and synthesis of high-performance GQD for H2 storage applications.  相似文献   

6.
Graphdiyne (GDY) is a new member of carbon allotropes consisting of sp and sp2 hybridized carbon atoms. In this work, the hydrogen adsorption on Calcium (Ca) decorated GDY and the influence of adatom on structural properties of GDY are investigated, using first principles plane wave calculations with Van der Waals corrections. The results show that similar to graphyne (GY) and unlike carbon nanotube (CNT), fullerene and graphene, clustering of Ca on GDY hinders due to the higher binding energy of the adatom to the carbon frame than the Ca cohesive energy. It can be seen that the Ca-decoration promotes hydrogen storage capacity of GDY, extremely (Eads = ?0.266 and ?0.066 eV for Ca-decorated and pristine GDY, respectively). It is concluded that, the best site for the Ca trapping is 18-membered ring in which, Ca lies in-plane of GDY (Eads = ?3.171 eV). Fourteen H2 molecules (with the average adsorption energy of ~0.2 eV/H2) can be adsorbed on the Ca atom from one side. The hydrogen storage capacity is estimated to be as high as 17.95 wt% for the both sides of GDY. So, the Ca-decorated GDY is offered as a promising candidate for hydrogen storage applications.  相似文献   

7.
Atomic hydrogen is predicted to form fractional Rydberg energy states H(1/p) called ‘hydrino atoms’ wherein n = 1/2,1/3,1/4,…,1/p (p ≤ 137 is an integer) replaces the well‐known parameter n = integer in the Rydberg equation for hydrogen excited states. The transition of H to a stable hydrino state H[aH/p = m + 1] having a binding energy of p2 × 13.6 eV occurs by a nonradiative resonance energy transfer of m × 27.2 eV (m is an integer) to a matched energy acceptor such as nascent H2O which has a potential energy of 81.6 eV (m = 3) to form an intermediate that decays with the emission of continuum bands with short wavelength cutoffs and energies of m2 × 13.6 eV. The predicted H(1/4) continuum radiation in the region 10 to 30 nm was observed first at BlackLight Power, Inc. (BLP) and reproduced at the Harvard Center for Astrophysics (CfA) wherein H2O catalyst was formed by a hydrogen reduction reaction at the anode of a hydrogen pinch plasma. By the same mechanism, the nascent H2O molecule formed by an oxidation reaction of OH? at a hydrogen anode is predicted to serve as a catalyst to form H(1/4) with an energy release of 204 eV compared to the 1.48 eV required to produce H from electrolysis of H2O. CIHT cells, each comprising a Ni anode, NiO cathode, a LiOH–LiBr eutectic mixture as the electrolyte, and MgO matrix exploit hydrino formation as a half‐cell reaction to serve as a new electrical energy source. The cells were operated under intermittent H2O electrolysis to generate H at the anode and then discharged to form hydrinos wherein trace H2O vapor was supplied as entrained in an inert gas flow in otherwise closed cells. Net electrical production over the electrolysis input was measured using an Arbin BT 2000 (<0.1% error) and confirmed using a digital oscilloscope, wherein no theoretical conventional energy was possible. Materials characterizations included those that quantified any compositional change of the electrolyte by elemental analysis using ICPMS, XRF, and XRD, and SEM were performed on the anode. The electrical energies were continuously output over long‐duration, measured on different systems, configurations, and modes of operation and were typically multiples of the electrical input that in most cases exceed the input by a factor of greater than 10. Calorimetry of solid fuels that exploited the same catalyst and a similar reaction mechanism showed excess thermal energy greater than 10 times the maximum possible from any conventional reaction. The predicted molecular hydrino H2(1/4) was identified as a product of CIHT cells and solid fuels by MAS 1H NMR, ToF‐SIMS, ESI‐ToFMS, electron‐beam excitation emission spectroscopy, Raman spectroscopy, photoluminescence emission spectroscopy, FTIR, and XPS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A novel highly stable surface coating SiH(1/p) which comprised high-binding-energy hydride ions was synthesized by a microwave plasma reaction of a mixture of silane, hydrogen, and helium wherein it is proposed that He+ served as a catalyst with atomic hydrogen to form the highly stable hydride ions. Novel silicon hydride was identified by time of flight secondary ion mass spectroscopy (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The ToF-SIMS identified the coatings as hydride by the large SiH+ peak in the positive spectrum and the dominant H in the negative spectrum. XPS identified the H content of the SiH coatings as hydride ions, H(1/4), H(1/9), and H(1/11) corresponding to peaks at 11, 43, and 55 eV, respectively. The silicon hydride surface was remarkably stable to air as shown by XPS. The highly stable amorphous silicon hydride coating may advance the production of integrated circuits and microdevices by resisting the oxygen passivation of the surface and possibly altering the dielectric constant and band gap to increase device performance.

The plasma which formed SiH(1/p) showed a number of extraordinary features. Novel emission lines with energies of q·13.6 eV where q=1,2,3,4,6,7,8,9, or 11 were previously observed by extreme ultraviolet spectroscopy recorded on microwave discharges of helium with 2% hydrogen (Int. J. Hydrogen Energy 27 (3) 301–322). These lines matched H(1/p), fractional Rydberg states of atomic hydrogen where p is an integer, formed by a resonant nonradiative energy transfer to He+ acting as a catalyst. The average hydrogen atom temperature of the helium–hydrogen plasma was measured to be 180–210 eV versus ≈3 eV for pure hydrogen. Using water bath calorimetry, excess power was observed from the helium–hydrogen plasma compared to control krypton plasma. For example, for an input of 8.1 W, the total plasma power of the helium–hydrogen plasma measured by water bath calorimetry was 30.0 W corresponding to 21.9 W of excess power in 3 cm3. The excess power density and energy balance were high, 7.3 W/cm3 and −2.9×104 kJ/molH2, respectively. This catalytic plasma reaction may represent a new hydrogen energy source and a new field of hydrogen chemistry.  相似文献   


9.
Density functional calculations are used to investigate hydrogen (H) behaviors in vanadium carbide (VC). Molecular H2 dissociation, atomic H diffusion and penetration are analyzed using the transition state theory. H2 prefers to be close to the surface as physical adsorption, providing an environment conducive for further dissociation, and dissociates into atomic H adsorbed at the top C atom sites with co-adsorption state. The dissociation rate on the surface is mainly limited by the temperature-controlled activation energy barrier. The adsorptivity of atomic H by the surface tends to decrease as increasing of H coverage. For atomic H penetration through the surface, a significantly endothermic energy barrier and the low diffusion prefactor suggest that the main resistant effect of H permeation takes place at the surface. Energetic, vibrational, electronic consequences, and quantum effects on the H behaviors are discussed thoroughly. Our theoretical investigation indicates VC is a promising hydrogen permeation barrier.  相似文献   

10.
Despite outstanding advances throughout this century, we still lack final knowledge on the structure of the hydrogen molecule because of a number of insufficiencies in available models identified in the text. In this paper we use the recently achieved covering of quantum chemistry called hadronic chemistry in its iso-chemical branch, and introduce a new model of the hydrogen molecule characterized by a bond at short distances of the two valence electrons into a singlet quasi-particle state called iso-electronium. We study the iso-chemical model of the hydrogen molecule with a stable iso-electronium describing an oo-shaped orbit around the respective two nuclei, and another model with a weaker realization of the iso-electronium as a partially stable state. We show that the new model provides, apparently for the first time, an exact representation of the binding energy and other characteristics of the hydrogen molecules from axiomatic principles, without ad hoc modifications of theory. In subsequent papers we shall show that the new model permits apparently novel advances in the energy, liquefaction and other technological applications of the hydrogen. © 1999 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

11.
In this study, using the first principles calculation and analysis, we found that the B-doping in double-vacancy defective graphene could effectively increase the binding energy of Ti atoms in each adsorption site, especially in the H2 adsorption site with a maximum binding energy of 8.3 eV. However, N-doped bilayer graphene (N-BLG) reduced the binding energy of Ti atoms by 88% of the adsorption sites. Given these two findings, a B- and N-doped bilayer double-vacancy-defective graphene (Ti-BDVG(Ti)-Ti) was constructed. Our findings also showed that the Ti-BDVG(Ti)-Ti outer surface and inner surface could adsorb 32 and 12H2 molecules, respectively, of which 22, 20 and 2H2 molecules are adsorbed by Kubas, electrostatic interactions and chemisorption, respectively. The hydrogen storage mechanism of Ti-BDVG(Ti)-Ti involves multiple adsorption modes, and this hydrogen storage mechanism provides a theoretical basis for the rational design of hydrogen storage materials with maximum effective hydrogen storage capacity.  相似文献   

12.
In the present study we report the hydrogen adsorption behavior of two SiC nanostructures; a planar sheet and a nanotube (10, 0) of 1 nm diameter decorated by Ti atoms on it. All calculations have been performed using a plane-wave based pseudopotential method. The lowest energy structure of the Ti adsorbed SiC sheet shows that Ti atom distorts the sheet in such a way that one of the Si atoms goes down the plane and the Ti atom bind with nearest three C atoms. The interaction of this Ti decorated sheet with hydrogen suggests that each Ti atom can bind up to four hydrogen molecules (all hydrogens are adsorbed in the molecular form) with an average binding energy of 0.37 eV. For SiC nanotube, the adsorption of Ti favors the hexagonal hollow site. Moreover, on interaction of this Ti decorated tube with hydrogen leads to dissociation of the first hydrogen molecule in the atomic form and thereafter adsorbs hydrogen in the molecular form. The average binding energy of hydrogen molecules on this Ti decorated tube is estimated to be 0.65 eV. Based on these results we infer that the Ti decorated SiC nanostructures moderately bind with hydrogen molecules (within the energy window for hydrogen storage materials) and therefore, can be considered as one of the potential hydrogen storage material.  相似文献   

13.
With the increasing depletion of conventional energy sources and their detrimental environmental hazards, it is imperative to search for sustainable alternative clean energy sources. In the recent decades, hydrogen has emerged as potential source of clean energy. One of the potential alternatives to achieve the objective is the designing and characterization of materials for hydrogen-storage energy applications. In this regard, metal-bearing hydrides are the most promising candidates. For instance, magnesium-bearing hydrides are the focus of current research work owing to high hydrogen capacity of 7.6 wt%. In this paper, we first time report density functional-based quantum theoretical analysis to explore the potential of Mo-doped magnesium hydrides MgH2:Mo for optoelectronic and hydrogen-storage applications. For the quantum computations of the required optoelectronics and energy storage properties, we employed all-electron methods within generalized gradient approximation (GGA). Besides applying GGA approximation to account for the electronic correlated effects, we employed the Hubbard potential U (= 4 eV) for onsite repulsive Coulomb force. We predict that 10% doping by weight of Mo into MgH2 suppresses its insulating band gap of 4.9 eV to semiconducting band gap of order 3.15 eV for spin up and 0.15 eV for spin down. As such the doping of Mo can tune the the bandgap, structural, electronic and optoelectronic properties of MgH2 considerably for potential applications.  相似文献   

14.
To acquire knowledge of the effect of chromium dopant bringing on hydrogen diffusion along grain boundaries (GBs) of α-Al2O3, the energetics and mobility of hydrogen along Σ13 GB with and without Cr dopant have been studied via the first-principles calculations with the projector-augmented wave method. The energy barriers for hydrogen diffusion before and after Cr doped on Al-terminated Σ13 GB are determined to be 0.69 eV and 1.09 eV, respectively, which is smaller than or close to the hydrogen bulk diffusion with an activation energy of 1.10 eV. The results suggest that before doping Cr atoms, there is a rapid and easy diffusion channel for hydrogen along the Σ13 GB. However, the calculations show the segregation of Cr atoms to the GB is energetic favorable with a segregation energy of ?0.39 eV/atom, and the existence of Cr can suppress hydrogen diffusion along the Al-terminated Σ13 GB.  相似文献   

15.
The electronic properties of a sandwich graphene(N)–Sc–graphene(N) structure and its average adsorption energies after the adsorption of 1, 3, 5, 7, 10, and 14H2 molecules were investigated by first principles. The average binding energies and adsorption distances of Sc atoms at different adsorption sites in N-doped bilayer graphene (N–BLG) were calculated. It was found that Sc atoms located at different adsorption sites of BLG generated metal clusters. The binding energy of the Sc atom located at the TT position of N–BLG (5.19 eV) was higher than the experimental cohesion energy (3.90 eV), and eliminated the impact of metal clusters on adsorption properties. It was found that the G(N)–Sc–G(N) system could stably adsorb 10 hydrogen molecules with an average adsorption energy of 0.24 eV. Therefore, it can be speculated that G(N)–Sc–G(N) is an excellent hydrogen storage material.  相似文献   

16.
Ab initio study on the viability of calcium decorated silicon carbide nanotube as a hydrogen storage material was conducted. Calcium strongly adsorbs on silicon carbide nanotube (SiCNT) with a significant binding energy of ?2.83 eV, thus calcium's low cohesive energy and strong binding with SiCNT may prevent Ca to form clusters with other adsorbates. Bader charge analysis also revealed a charge transfer of 1.45e from Ca to SiCNT resulting to calcium's cationic state, which may induce charge polarization to a nearby molecule such as hydrogen. Hydrogen molecule was then allowed to interact with the calcium adatom where it exhibited charge polarization, induced by the electric field from calcium's positive charge. This resulted to a significant binding energy of ?0.22 eV for the first hydrogen molecule. Results reveal that Ca on SiCNT can hold up to 7 hydrogen molecules and can be a promising candidate for a hydrogen storage material.  相似文献   

17.
For efficient hydrogen and oxygen production, design and synthesis of cost-effective, stable and active materials are inevitable. In this work, the catalytic activity of 2D CoOOH towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has been investigated using first principles calculations based on density functional theory. The adatom induced structural rearrangement have been investigated from structural parameters as well as charge redistribution in 2D CoOOH. The preferred site for hydrogen and oxygen adsorption were found to be the top site of oxygen atom of 2D CoOOH. The catalytic activity of HER and OER towards 2D CoOOH was studied by calculating the Gibbs free energy. Our study revealed that the 2D CoOOH serve better as a catalyst for HER than OER with adsorption energy of −0.45 and −3.68 eV respectively suggesting its efficient use for hydrogen production. We further investigated the changes in electronic properties of 2D CoOOH on adsorption of hydrogen and oxygen atom.  相似文献   

18.
Critical nozzles are widely used in the flow measurement and can be used for mass flow-rate measurement of hydrogen gas. The effect of real gas state equation on discharge coefficient of hydrogen gas flow through a critical nozzle was investigated. The real gas critical flow factor was introduced which considers the effect of the real gas on discharge coefficient. An analytic solution of real gas critical flow factor of hydrogen gas calculated from the modern equations of state based on Helmholtz energy, over a wider range of temperature 150–600 K and pressure up to 100 MPa was presented. An accurate empirical equation for real gas critical flow factor was determined by the nonlinear regression analysis. The equation was in good agreement with the high-pressure hydrogen gas experimental data by Morioka and CFD solutions by Nagao and Kim. Using this equation, the discharge coefficient can be directly and accurately calculated. It indicates that the discharge coefficient of hydrogen gas should be comprehensively taken into consideration with stagnation temperature, stagnation pressure and nozzle throat diameter. A lot of detailed results about the effect of real gas state equation were obtained.  相似文献   

19.
This paper examines photocatalytic hydrogen production as a clean energy solution to address challenges of climate change and environmental sustainability. Advantages and disadvantages of various hydrogen production methods, with a particular emphasis on photocatalytic hydrogen production, are discussed in this paper. Social, environmental and economic aspects are taken into account while assessing selected production methods and types of photocatalysts. In the first part of this paper, various hydrogen production options are introduced and comparatively assessed. Then, solar‐based hydrogen production options are examined in a more detailed manner along with a comparative performance assessment. Next, photocatalytic hydrogen production options are introduced, photocatalysis mechanisms and principles are discussed and the main groups of photocatalysts, namely titanium oxide, cadmium sulfide, zinc oxide/sulfide and other metal oxide‐based photocatalyst groups, are introduced. After discussing recycling issues of photocatalysts, a comparative performance assessment is conducted based on hydrogen production processes (both per mass and surface area of photocatalysts), band gaps and quantum yields. The results show that among individual photocatalysts, on average, Au–CdS has the best performance when band gap, quantum yield and hydrogen production rates are considered. From this perspective, TiO2–ZnO has the poorest performance. Among the photocatalyst groups, cadmium sulfides have the best average performance, while other metal oxides show the poorest rankings, on average. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Using Maxwell's equations, the structure of the electron was derived by Mills as a boundary-value problem wherein the electron comprises the source current of time-varying electromagnetic fields during transitions with the constraint that the bound n = 1 state electron cannot radiate energy. A reaction predicted by the solution involves a resonant, nonradiative energy transfer from otherwise stable atomic hydrogen to a catalyst capable of accepting the energy. Specifically, a catalyst comprises a chemical or physical process with an enthalpy change equal to an integer multiple m of the potential energy of atomic hydrogen, 27.2 eV. The product is H (1/p  ), fractional Rydberg states of atomic hydrogen called “hydrino atoms” wherein  n=1/2,1/3,1/4,…,1/p n=1/2,1/3,1/4,,1/p (p ≤ 137 is an integer) replaces the well-known parameter n = integer in the Rydberg equation for hydrogen excited states. The reaction step of a nonradiative energy transfer of an integer multiple of 27.2 eV from atomic hydrogen to the catalyst results in an ionized catalyst and free electrons that may cause the reaction to rapidly cease due to charge accumulation. Li, K, and NaH served as the catalysts to form hydrinos at a rapid rate when a high-surface-area conductive support doped with an oxidant was added to speed up the rate limiting step, the removal of electrons from the catalyst as it is ionized by accepting the nonradiative resonant energy transfer from atomic hydrogen to form hydrinos. The concerted electron-acceptor reaction from the catalyst to oxidant via the support was also exothermic to heat the reactants and enhance the rates. Using water-flow, batch calorimetry, the measured power and energy gain from these heterogeneous catalyst systems were up to over 10 W/cm3 (reactant volume) and a factor of over six times the maximum theoretical, respectively. The reaction scaled linearly to 580 kJ that developed a power of about 30 kW. Solution 1H NMR on samples extracted from the reaction products in DMF-d7 showed the predicted H2 (1/4) and H (1/4) at 1.2 ppm and −3.8 ppm, respectively. ToF-SIMs showed sodium hydrino hydride peaks such as NaHx, peaks with NaH catalyst, and the predicted 11 eV binding energy of H (1/4) was observed by XPS. In an advancement over prior NaOH-doped Raney Ni power systems, the reactants of each solid fuel or heterogeneous-catalyst system can be regenerated from the products using commercial chemical-plant systems. Based on the observed energy gain and successful thermal regeneration, green power plants can be operated continuously as power and eutectic-melt electrolysis or thermal regeneration reactions are maintained in synchrony. The system is closed except that only hydrogen consumed in forming hydrinos need be replaced. Hydrogen can be obtained ultimately from the water with 200 times the energy release relative to combustion. These results indicate current commercial feasibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号