首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 102 毫秒
1.
凸轮非圆磨削动态误差预测及补偿   总被引:1,自引:0,他引:1  
对凸轮非圆磨削过程中伺服跟踪误差产生的原因进行分析,并定量计算了凸轮非圆磨削中数控系统的伺服滞后误差,并指出了数控系统的调整只能减小伺服滞后误差,不能消除伺服滞后误差.根据工件的实际测量结果,采用神经网络预测凸轮非圆磨削过程的误差,并进行相应的补偿.通过实际磨削测量结果表明,采用RBF网络能较好地解决凸轮非圆磨削过程中的误差补偿.  相似文献   

2.
曲轴非圆磨削四点刚度法的力变形计算   总被引:1,自引:0,他引:1  
采用非圆磨削加工曲轴可在一次装夹完成主轴颈和连杆颈的磨削.在加工曲轴的连杆颈时,由于曲轴不同方向的刚度并不相同,加工过程中不同方向的误差也不相同;多拐曲轴的长度比较长,属异形细长轴,因此受力变形不仅影响加工精度,也是影响磨削效率进一步提高的主要原因之一.采取四点法测定曲轴刚度,找出弹性位移对加工精度的影响规律,可准确地得到曲轴的刚度模型,并进一步确定工件的弹性变形,对加工进行预补偿,提高工件的加工精度和效率.  相似文献   

3.
曲轴非圆的恒当量磨削厚度磨削运动模型研究   总被引:4,自引:0,他引:4  
研究了曲轴连杆颈非圆磨削的运动模型,针对模型的复杂计算,按照恒磨除率的原理,提出了切点沿连杆颈表面匀速移动的简化计算方法,分析了简化模型对当量磨削厚度的影响,给出了简化模型的修正计算公式。仿真结果表明,计算公式有较宽的适应范围,可用于数控插补计算。  相似文献   

4.
研究一种曲轴新型非圆随动磨削运动模型,提出基于砂轮架水平进给轴、附加升降轴与工件转动轴联动的随动磨削控制方式,通过砂轮架水平进给轴、附加升降轴的连续圆弧插补运动与曲轴连杆颈偏心圆周运动同步,确保曲轴工件绕主轴颈中心回转时砂轮与连杆颈切点始终与砂轮中心、连杆颈中心保持三点一线关系,继而实现连杆颈的恒线速精密磨削加工;从运动学角度分析砂轮架水平进给轴与附加升降轴的垂直度误差、数控系统响应偏差对连杆颈磨削精度的影响规律以及相应解决措施;通过新型非圆随动磨削运动模型计算机仿真分析与样品磨削加工试验表明,所研究随动磨削运动模型具有砂轮磨损适应能力强、机床运动控制简便、曲轴连杆颈磨削精度高的显著特点.  相似文献   

5.
针对精密曲轴磨削(连杆颈)加工中存在的精度问题,利用随动磨削数控机床运动的数学模型推导出理想的砂轮磨削轨迹的求解方程.利用多体系统理论推导出从机床-工件分支与机床-刀具分支的坐标转换方程、曲轴磨削的精密加工方程,进而将随动磨削加工数学模型与多体系统的误差补偿技术相结合,研究了理想数控指令的生成方法,并用精密迭代的方法求解出误差条件下精密加工数控指令.修正后的指令可以在曲轴磨削生产当中保证曲轴(连杆颈)的表面加工质量,达到了精密曲轴磨削的精度要求.  相似文献   

6.
曲轴非圆磨削通常采用补偿单轴伺服跟踪误差的方法来提高连杆颈轮廓加工精度,但磨削运动中大惯量砂轮架会严重影响伺服系统的高速响应性,导致单轴伺服跟踪误差补偿轮廓误差效果不理想.因此引入双轴联动交叉耦合控制思想,首先工件旋转轴与砂轮架直线轴的联动运动被近似为两根直线轴联动,并建立曲轴非圆磨削轮廓误差模型,在此模型基础上设计交叉耦合控制系统.为了弥补这种近似对非线性轨迹控制带来的不足,研究分段变参数的交叉耦合控制策略,并以工件轮廓误差最小为目标,采用差分进化(Differential evolution,DE)算法逐段对控制器参数进行优化.仿真实例结合试验表明:在基于DE算法优化的变参数交叉耦合控制下,曲轴非圆磨削理论轮廓精度较普通比例微分和积分控制或交叉耦合控制有所提高.  相似文献   

7.
本文对MQ8260B系列机床磨削六档曲轴时,造成圆度误差的因素作了分析,最后得出只要砂轮主轴中心连线与头尾架主轴连线及卡盘中心连线平行,曲轴的圆度就能得到保证。  相似文献   

8.
一、前言随着人们对机械加工设备的先进性、可靠性、安全性等方面的日渐重视,引进先进设备或仿形制造不乏是一种良策,但又带来了一些新的问题,有待我们去发现,研究直至了解。如进口设备SRCK25X48MF-11型曲轴连杆颈磨床,由于其夹具中的夹紧块引起曲轴两端外表面拉毛起线,故常需更换、调整夹紧块,若调整不当或压板磨损的话,将产生曲轴连杆颈三角棱形圆度误差,见图1所示;同时又无法及时发觉,其后果轻则降低发动机的使用寿命,重则产生抱瓦、拉瓦,严重影响产品可靠性。本文对我厂曾出现过的实际情况作理论分析,找出了问题产生…  相似文献   

9.
运用补偿法使现有国产MB8260A曲轴磨床加工曲轴连杆颈的圆度有显著改善。试验结果表明,本文提出的补偿方案及研制的补偿系统可使工件圆度误差值减小30%以上。  相似文献   

10.
从理论上分析了杆件在径向磨削力的作用下产生的变形,并通过磨削实验验证了这种现象的普遍存在。该变形造成工件中间直径大于两端,严重影响工件的直线度和圆柱度。针对这种腰鼓变形,提出在数控磨床上,利用程序补偿技术进行插补补偿,通过试验表明程序补偿能有效提高了工件的形状精度。  相似文献   

11.
非圆工件加工中自动误差补偿技术的研究   总被引:1,自引:1,他引:1  
介绍了一种基于非圆加工的新的误差补偿系统,该系统根据不同误差源的特点先进行误差分离,然后根据分离的误差对加工数据进行软件自动补偿.还分析了该误差补偿系统补偿算法的收敛性和动态特性.  相似文献   

12.
在分析国内外磨削加工误差分析与补偿研究现状基础上,针对X轴和C轴两轴联动的凸轮轴数控磨削的轮廓误差提出一种轮廓误差分析和补偿策略,以提高凸轮磨削加工精度。基于凸轮轴数控磨削的X-C联动运动模型,推导了由凸轮升程表到磨削加工位移表的数学模型;指出凸轮升程与轮廓的误差变化规律在趋势上具有一致性。基于最小二乘多项式方法对多次磨削加工实验的凸轮升程误差进行一系列拟合处理,得到稳定的、可重复的凸轮升程预测误差;将升程预测误差按一定比例反向叠加到理论升程表中,采用最小二乘多项式法进行光顺,得到光顺的虚拟升程表;利用虚拟升程表对同类型凸轮轴进行磨削加工实验。实验结果表明,砂轮架速度和加速度在机床伺服响应范围之内,凸轮最大升程误差与最大相邻误差降低,凸轮轮廓表面粗糙度值满足加工要求,从而证明该误差分析和补偿方法是正确可行的。  相似文献   

13.
分析了活塞 -曲轴系统的动力学特性 ,以时间序列来表达系统的运动速度、加速度与跃度的变化 ,获得该系统的全面动特性。并对活塞 -曲轴系统进行了惯性力分析 ,针对性地提出改进活塞 -曲轴系统性能、减小二阶运动、降低摩耗的途径 ,另一方面也提高了发动机的整体性能  相似文献   

14.
利用多体动力学和有限元方法对往复式压缩机曲轴的动态特性进行了分析。通过建立往复式压缩机曲轴动力学模型和对其进行的模态分析,得到在自由状态和约束状态下曲轴前八阶的固有频率和模态振型,在模态分析的基础上通过曲轴动态响应计算获得曲轴不同转角时刻下的位移应力分布情况和关键部位的应力随时间变化规律。分析结果表明,建立的曲轴有限元模型较好地反映了曲轴实际结构的动态特性,曲轴的各阶固有频率均远高于工作频率,因此曲轴共振的可能性很小,曲轴结构强度的可靠性较高。研究分析结果可作为曲轴结构优化的理论参考。  相似文献   

15.
滚珠丝杠磨削加工热变形误差的分段补偿方法   总被引:1,自引:0,他引:1  
李郝林  陈琳 《工具技术》2009,43(6):53-54
在分析滚珠丝杠磨削过程中热变形误差变化的基础上,提出一种基于有限元法的确定螺距热误差分段补偿量的算法,并通过具体算例说明了该方法的计算过程,为保证滚珠丝杠的磨削加工精度提供了手段。  相似文献   

16.
通过对磨削加工过程中的误差信息进行综合分析,运用人工神经网络的基本方法,建立了基于神经网络理论的精密磨削加工误差补偿模型,并从结构和算法方面进行了详细阐述。给出了对磨削加工进行实时误差补偿的硬件实现方法,并通过样本的合理选择及系统的学习过程提高了该误差补偿系统的补偿能力。  相似文献   

17.
杨清艳  韩江  张魁榜  夏链 《中国机械工程》2013,24(23):3144-3149
以QCYK7332A数控成形砂轮磨齿机为例,对机床误差进行了分析。应用多体系统理论以及齐次坐标变换建立了几何误差模型,得到了此模型下砂轮尖的6个自由度误差表达式,并在此基础上以机床B轴为例,说明了运动轴误差转化到磨具上,从而引起所加工齿轮的齿距、齿形、压力角等误差。为了减小误差,提出了函数补偿法,并以测量机床的X轴角度误差为例,说明机床误差预测以及实时误差补偿的过程,为提高数控成形砂轮磨齿机精度、减小机床的几何误差提供了理论依据。  相似文献   

18.
提出一种基于 3个激光发生器和 3个激光位置检测器 (PSD)的挠性构件动态误差测量方法 ,该法可以测量除杆长方向外的 5个变形分量 ,且光路和测量模型简单 ;建立了 PSD上光点位置与构件各误差分量及机器人末端执行器动态误差之间的关系 ,并给出其补偿控制方法。  相似文献   

19.
为实现复杂、异形刀剪的端面磨削,提出一种空间端面磨削三轴联动控制方法。根据端面磨削的工艺特点与卧式端面磨床的结构特点,建立砂轮径向进给量、轴向进给量、旋转角度等加工参数与工件顶面磨削量、底面磨削量、磨削宽度等工艺参数间的函数关系,并结合端面的投影规律,实现一个旋转轴与两个平动轴的三轴联动控制。建立砂轮轴向进给误差与砂轮直径、刃线轮廓以及旋转角度间的函数关系,并提出误差补偿方法。试验结果表明,所提运动控制与误差补偿方法能够实现复杂、异形刀剪的端面磨削。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号