首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A power swing may be caused by any sudden change in the configuration or the loading of an electrical network. During a power swing, the impedance locus moves along an impedance circle with possible encroachment into the distance relay zone, which may cause an unnecessary tripping. In order to prevent the distance relay from tripping under such condition, a novel power swing blocking (PSB) scheme is proposed in this paper. The proposed scheme uses an adaptive neuro-fuzzy inference systems (ANFIS) for preventing distance relay from tripping during power swings. The input signals to ANFIS, include the change of positive sequence impedance, positive and negative sequence currents, and power swing center voltage. Extensive tests show that the proposed PSB has two distinct features that are advantageous over existing schemes. The first is that the proposed scheme is able to detect various kinds of power swings thus block distance relays during power swings, even if the power swings are fast or the power swings occur during single pole open conditions. The second distinct feature is that the proposed scheme is able to clear the blocking if faults occur within the relay trip zone during power swings, even if the faults are high resistance faults, or the faults occur at the power swing center, or the faults occur when the power angle is close to 180°.  相似文献   

2.
The paper presents a data-mining model based adaptive protection scheme enhancing distance relay performance during power swing for both compensated and uncompensated power transmission networks. In the power transmission network, the distance relays are sensitive to certain system event such as power swings, which drive the apparent impedance trajectories into the protection zones of the distance relay (zone-3) causing mal-operation of the distance relay, leading to subsequent blackouts. Further, three-phase balanced symmetrical fault detection during power swing is one of the serious concerns for the distance relay operation. This paper proposed a new adaptive protection scheme method based on data-mining models such as DT (decision tree) and RF (random forests) for providing supervisory control to the operation of the conventional distance relays. The proposed scheme is able to distinguish power swings and faults during power swing including fault zone identification for series compensated power transmission network during stress condition like power swing. The proposed scheme has been validated on a 39-bus New England system which is developed on Dig-Silent power factory commercial software (PF4C) platform and the performance indicate that the proposed scheme can reliably enhance the distance relay operation during power swing.  相似文献   

3.
提高大规模风电接纳及送出的系统保护研究   总被引:7,自引:0,他引:7       下载免费PDF全文
为了提高酒泉风电的接纳和送出,从系统视角提出一种大规模风电接入电网线路的继电保护与控制一体化新方法。利用基于统计分析的潮流波动判据和基于本地信息量的潮流转移识别,从风电潮流波动中甄别出某重负荷线路发生了故障、判别出该线路因故障被继电保护动作切除、进而还识别出原先由故障线路承担的负荷潮流转移到了非故障线路上,并导致非故障线路过负荷。结合自适应过负荷保护,在线路安全的前提下尽可能挖掘其潜在载流能力。同时融合紧急控制功能,按实际需要切除风电,消除非故障线路的过负荷而不是切除该线路,解决连锁解网问题。在理论和仿真研究的基础上,研制并现场安装保护装置并检验所提系统保护方案的正确性。  相似文献   

4.
Electric power grids are critical infrastructure for delivering energy from generation stations to load centers. To maximize utilization of assets, it is desirable to increase the power transferred over transmission systems. Reliable protection of transmission systems is essential for safeguarding the integrity and reliability of the power grid. Distance protection is the most widely used scheme for protecting transmission lines. Most existing protection systems use local measurements to make a decision while pilot protection is used in some circumstances. Distance protection may fail under stressed operating conditions, which could lead to cascading faults. This paper proposes a system integrity protection scheme by utilizing wide area measurements. The scheme partitions the system into subnetworks or protection zones and employs current measurements to derive a fault identification vector indicating the faulted zone. Then the fault location is pinpointed based on wide area measurements and network data. The proposed method is able to deal with multiple, simultaneous faults, and is applicable to both transposed and untransposed lines. Evaluation studies based on simulation studies are presented.  相似文献   

5.
With the increased installation of renewable energy based distributed generations (DGs) in distribution systems, it brings about a change in the fault current level of the system and causes many problems in the current protection system. Hence, effective protection schemes are required to ensure safe and selective protection relay coordination in the power distribution system with DG units. In this paper, a novel adaptive protection scheme is proposed by integrating fault location with protection relay coordination strategies. An automated fault location method is developed using a two stage radial basis function neural network (RBFNN) in which the first RBFNN determines the fault distance from each source while the second RBFNN identifies the exact faulty line. After identifying the exact faulty line, then protection relay coordination is implemented. A new protection coordination strategy using the backtracking algorithm is proposed in which it considers the main protection algorithm to coordinate the operating states of relays so as to isolate the faulty line. Then a backup protection algorithm is considered to complete the protection coordination scheme for isolating the malfunction relays of the main protection system. Several case studies have been used to validate the accuracy of the proposed adaptive protection schemes. The results illustrate that the adaptive protection scheme is able to accurately identify faulty line and coordinate the relays in a power distribution system with DG units. The developed adaptive protection scheme is useful for assisting power engineers in performing service restoration quickly so as to decrease the total down time during faults.  相似文献   

6.
Zone 3 of a distance relay is used to provide the remote backup protection in case of the failure of the primary protection. However, the risk of maloperation under stressed conditions such as heavy loading, voltage, and transient instability is quite high. Zone 3 is used in combination with the derivatives of the voltage and current, etc. to prevent maloperation. At times, the impedance characteristics that restrict the tripping area of relay are used to avoid maloperation due to load encroachment. This work presents a novel zone 3 scheme based on combining the steady-state components (i.e., 60 Hz) and the transient components (TCs) using a state diagram that visualizes the sequence of studies that emanate from the sequence of events. The simulation results show that the novel zone 3 distance relay elements using the proposed method operate correctly for the various events.  相似文献   

7.
This paper reports the use of a novel ultra-high speed scheme to release the distance relay to operate for a fault during a power swing in the series compensated line. In the scheme, in order to extract the fault induced voltage and current components, voltage and current samples are analyzed by the multi-resolution morphological gradient (MMG), first. Then, the fault initiated forward travelling wave is computed at the distance relay point. Next, Likelihood ratio [LR] test is utilized to detect a jump in the statistical mean of the calculated forward travelling wave. Finally, a support vector machine (SVM) classifier is employed to distinguish faults from other normal capacitor and switching transients. It is shown that in all of the simulated cases, our ultra-high speed algorithm was successful in fault detection across a wide range conditions including, fault type, fault resistance, fault location, pre-fault loading and fault inception time. Moreover, we found that using the proposed scheme significantly speeded the fault detection, in comparison with the existing phasor based methods. In addition, the improvements noted in our algorithm are achieved with a low computational burden.  相似文献   

8.
A distance protection scheme for transmission lines based on analyzing the measured voltage and current signals at the relay location using fast orthogonal search (FOS) is presented in this paper. FOS has the ability to accurately provide fast estimate of the voltage and current fundamental frequency phasors that are required for a digital distance relay. Compared to the conventional FFT, FOS can estimate the fundamental phasors with higher accuracy and less number of samples. The proposed scheme has been tested on a transmission line model to verify the merit of this approach. The tests presented include solid ground faults, phase faults, and high impedance faults at different fault locations and loading conditions. The proposed scheme can classify all fault cases in less than one cycle after the inception of the faults.  相似文献   

9.
This paper proposes a novel wavelet transform based relaying scheme for power transformer protection. The relay logic consists of two parts: disturbance detection based on first level high frequency details of the voltage signals only and fault discrimination using a power based directional signal derived from the first level high frequency details of both voltage and current signals. The logic is deterministic, computationally efficient, fast, secure and highly reliable. The operating time is 6 ms, about 1/3rd of power frequency cycle (20 ms). The scheme uses only the sign of the directional signals, rather than the difference in their magnitudes, hence it can work reliably in the presence of transformer tap variation, fault resistance and CT saturation. The validity of the proposed logic was exhaustively tested by simulating various types of internal and external faults, energization conditions and load variations on a 132 kV system modeled in ATP/EMTP with a 31.5 MVA, 132/33 kV, Y–Δ transformer. The proposed logic was able to correctly discriminate between internal faults, external faults and non-fault disturbances for all the 880 test cases.  相似文献   

10.
This paper proposes a distance relaying scheme based on the current phase jump behavior during fault conditions to improve the apparent impedance estimated by the distance relay. For a nonpilot protection scheme, the measured impedance is affected by error due to the combined effects of fault resistance and prefault load. An experimental relation between the current phase jump introduced with fault inception and the X/R ratio seen by the distance protection is deduced. The phase jump correction factor obtained is an exponential function of the X/R ratio of the line. This factor is applied to the apparent impedance measured by the relay and it allows mitigating the adverse effect of prefault power. The relaying scheme improves significantly the accuracy in estimation of the resistive fault location. The application of this scheme does not require communication links from the remote end of line and is applicable to all types of fault.  相似文献   

11.
相差纵联保护具有区别电力系统振荡与短路的优越性能,但传统相差保护在内部故障时灵敏度易受负荷电流和过渡电阻的影响,且应用于双回线或环网时其性能受线路分布电容影响,在外部故障时保护可能误动。基于无损线路分布参数模型及故障分量保护原理,提出了新型相差保护原理。理论上保护性能不受负荷电流和过渡电阻的影响,且完全杜绝了外部故障时保护误动的可能性,极大地提高了保护安全性,且各种内部故障时可靠动作。理论分析表明所提原理适用于各种故障类型,其性能不受故障电阻及系统运行状态等的影响。大量的仿真也证明了该原理的正确性。  相似文献   

12.
新型微机电抗器保护的研制与开发   总被引:5,自引:2,他引:5  
分析了目前超高压并联电抗器保护所存在的一些问题,包括电抗器匝间短路保护灵敏度与可靠性、电流互感器暂态特性不一致对差动保护的影响等。介绍了新一代数字式电抗器成套保护装置的总体设计思想(双主双后配置)、新型高灵敏度高安全可靠的匝间短路保护原理以及考虑电流互感器暂态特性不一致的差动保护原理。新型电抗器匝间短路保护由自适应补偿的零序功率方向元件、零序阻抗元件、故障开放元件、谐波闭锁元件以及具有工频变化量浮动门槛的匝间短路保护启动元件共同构成。给出了这些保护原理的数字仿真、动模试验及现场运行结果。  相似文献   

13.
有功功率差动保护在消除线路分布电容影响、应对高阻故障等方面独具优势,但近处金属性故障时的性能缺陷限制了其实际应用。为解决此问题,文中依据叠加原理,提出了虚拟有功功率的概念,并对内、外部故障时线路两端虚拟有功功率的特征进行了分析。以此为基础,提出了分相虚拟有功功率差动保护动作判据,并对其动作特性进行了定性分析。借助PSCAD搭建500kV输电线路模型,全面仿真和评估了不同故障位置、故障类型、过渡电阻、无功元件调整、非同步数据等多种因素对保护方案的影响。理论分析及仿真结果表明,该保护方案可准确辨别故障区间且近处金属性故障无死区,耐过渡电阻能力较强,数据交换量少,同步要求低,无需电容补偿措施。  相似文献   

14.
背靠背柔性环网控制装置的应用使配电网由单端电源供电的辐射状网络变为多端电源供电网络,三段式电流保护无法判断故障方向。为了既保证配电网保护动作可靠性又保留三段式电流保护,需要为保护安装方向元件。文中通过研究背靠背柔性环网控制装置接入的交流配电网发生不同位置相间故障时序电流间的相位规律,提出了基于流过保护的负序电流和同一母线上无源支路正序电流间相位关系的故障方向判别元件,并给出了正反方向故障时方向元件的动作区间。该方向元件适用于由传统电源、采用负序电流抑制的柔性环网控制装置或分布式电源构成的且母线含无源支路的多端供电网络。该元件受过渡电阻影响小,无需安装电压互感器,在三相对称故障时仍可保证保护的正确动作,不存在传统功率方向元件出口三相故障时的死区问题。经PSCAD仿真验证了该方向元件在系统不同位置发生各种相间故障时的正确性和有效性。  相似文献   

15.
基于横差模电流暂态能量的同杆双回线保护方案   总被引:11,自引:5,他引:6  
范春菊  郁惟镛  K.K.Li 《电网技术》2006,30(18):69-74
利用同杆双回线内部故障和外部故障的特点,构成了能准确区分区内、区外故障的速动保护方案。将同杆双回线各回线故障后的电流量分解为不同频段上的暂态信息和稳态信息,得到故障后电流的暂态特征,利用暂态特征的差值构成基于横差模电流暂态能量的保护方案,利用相继动作方法可迅速切除同杆双回线内部的各种故障。保护的灵敏度不受过渡电阻、雷击、故障类型、负荷电流、系统运行方式等因素的影响。此外,由于保护的数据窗很短,电压互感器、电流互感器的传变特性对保护的性能没有影响。  相似文献   

16.
Any sudden change in the configuration or the loading of an electrical network causes power swings between the load concentrations of that network. In order to prevent the distance protection from tripping during such conditions, a power swing blocking device is often utilized. Conventional power swing blocking devices cannot cope with very fast power swings of up to 5 Hz/sec. This paper presents a new power swing blocking principle that has the ability to immediately clear the block when a fault occurs within the relay trip zone. This is demonstrated for extremely fast swings (greater than 5 Hz/sec) and even for two phase operation (during single pole tripping). This new principle is in a form which can be implemented on an existing digital distance protection relay. Results are presented based on extensive simulation studies carried out on a typical 400 kV system, using the Electromagnetic Transient Program (EMTP) software  相似文献   

17.
Parallel transmission lines often pose more difficult protection problems than single lines. In the case of parallel lines, a number of problems arise when using the distance protection. The paper discusses problems associated with parallel line distance relaying schemes and presents a novel technique to overcome these problems. Two relays instead of four are proposed for the double lines, One relay is located at the beginning and another one at the end. Each relay is fed by three voltage and six current signals from the two lines. The suggested technique is based on the comparison of the measured impedance of corresponding phases. So, the complexity of the possible types of faults, high path fault resistance, mutual effects, current in-feed, inter-system faults are solved. Moreover, 100% of line is protected and the problem of balance-point locations is avoided. Alternative Transient Program models the power system and simulates different fault conditions  相似文献   

18.
A new weak fault component reactance distance relay is proposed in this paper. By adaptive setting of the compensated voltage, the scheme synthesizes the performance of the impedance distance relay and the reactance distance relay. The distance protection relay on the receiving end will misoperate when the fault resistance is larger than the critical resistance. So a new switching criterion is applied to eliminate this disadvantage. Based on that, the proposed scheme can detect the fault with the high fault resistance in the setting coverage, regardless of whether the relay is located at the receiving end or the sending end. Test results from the simulation and experimental conditions show that the new scheme is successful in detecting the internal fault. It has higher sensitivity and selectivity during different conditions than the traditional fault component protection schemes.  相似文献   

19.
高压输电线路中存在较大的过渡电阻,很容易引起距离保护拒动或误动.分析特高压单侧电源经长线路出口故障和双侧电源长线路出口故障时过渡电阻对距离保护工作的影响,探讨单侧电源助增电流网络、外汲电流网络中过渡电阻对测量阻抗的影响,并给出2种网络结构在不同地点处保护测量阻抗的计算公式.研究能较好躲过渡电阻特性的零序电抗继电器、自适应接地距离继电器、神经网络距离继电器,分析比较不同方法的优缺点及适用场合.  相似文献   

20.
In conventional transmission line protection, a distance relay is used to provide the primary as well as remote backup protection. The voltage and current phasors measurement needed by the distance relay for determining the impedance may be affected by the power disturbances such as power swing. Consequently, this power swing may cause mal-operation of Zone three distance relays which in turn may affect on the reliability of the whole protective scheme. To mitigate these effects and hence improve the relay reliability, this work proposes a new real-time power swing detector using phasor measurement units for blinding the distance relay only during this transient disturbance. However, this developed detector will not block relay when the power swing accompanied with faults. To validate the present work, the performance of developed enhanced distance relay is tested by signals generated by Simulink/MATLAB simulator under different conditions. The test results show that this proposed scheme provides good discrimination between the transient currents and the fault current which in turn it may contribute in enhancing the reliability of Distance relay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号