首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have considered the possible performance improvements when smart antennas are used in packet-switched data networks [1, 2, 3]. This work has included systems which operate using various ALOHA, polling, and reservation-based protocols. Recently however, a single-beam system was described which uses a smart antenna basestation to communicate with a set of stations using a carrier sense multiple access (CSMA) protocol [4]. In this system, performance improvements are obtained by having the antenna dynamically point pattern nulls in the direction of interfering stations, thus reducing the effects of channel collisions.In this paper, we consider the performance of CSMA systems where stations access a smart antenna basestation using multibeam SDMA. As in other SDMA networks, the objective is for the basestation to transmit or receive multiple packets simultaneously. A basic CSMA/SDMA protocol is proposed for this purpose. Note that unlike conventional systems, the CSMA objective of isolating a single successful transmission is not desirable. Instead, our protocol uses carrier-sensing to synchronize various smart antenna operations. In this paper we also present a more sophisticated CSMA/SDMA protocol which incorporates novel basestation/portable signalling which mitigates the effects of hidden stations. The proposed mechanism takes into account the transient connectivity of such systems using the coherence time of the channel as an operating parameter. The performance of these systems is characterized and compared using analytical throughput/capacity models and mean delay simulations. It is shown that when hidden station effects are present, the capacity performance of the more sophisticated protocol may be much higher than that of the basic version.  相似文献   

2.
In mobile wireless networks, dynamic allocation of resources such as transmit powers, bit-rates, and antenna beams based on the channel state information of mobile users is known to be the general strategy to explore the time-varying nature of the mobile environment. This paper looks at the problem of optimal resource allocation in wireless networks from different information-theoretic points of view and under the assumption that the channel state is completely known at the transmitter and the receiver. In particular, the fading multiple-access channel (MAC) and the fading broadcast channel (BC) with additive Gaussian noise and multiple transmit and receive antennas are focused. The fading MAC is considered first and a complete characterization of its capacity region and power region are provided under various power and rate constraints. The derived results can be considered as nontrivial extensions of the work done by Tse and Hanly from the case of single transmit and receive antenna to the more general scenario with multiple transmit and receive antennas. Efficient numerical algorithms are proposed, which demonstrate the usefulness of the convex optimization techniques in characterizing the capacity and power regions. Analogous results are also obtained for the fading BC thanks to the duality theory between the Gaussian MAC and the Gaussian BC.  相似文献   

3.
分析了MIMO技术中由于通信链路间干扰导致网络吞吐量降低的问题,提出了一种基于多模多信道技术的改进MAC协议(MPRP-MAC),利用节点中的多个通信模块以及多个正交信道资源,使节点可以在无干扰的情况下实现接收与发送同时进行。实验结果表明,该技术可充分利用天线资源,有效提高系统容量。  相似文献   

4.
In this paper we propose a MAC called “Neighbor Initiated Approach for avoiding Deaf and Hidden node problems in directional MAC protocol for Ad Hoc networks”, which takes advantage of the multi beam smart antennas. Through the antenna, a node can simultaneously transmit/receive a packet to/from all the directions around it. Thus the antenna switches itself in transmission and reception mode. In our scheme all transmission and reception will be directional. We discussed the hidden and deaf node problems with directional MAC and proposed the scheme to overcome those shortcomings. Our scheme has been inspired by the IEEE 802.11, which includes a new scheme to inform its neighbors who was deaf due to other communication. Moreover, the simultaneous transmission of the RTS/CTS through it’s all beams prevent the hidden node problem. In our scheme the idle nodes stay in reception mode for sensing the channel through its M non overlapping beams, as a substitute of omnidirectional antenna. It prevents the hidden node problem due to asymmetry in gain. We have simulated our scheme by OPNET 16.0, and compared our results with CDR MAC, DMAC and IEEE 802.11 protocols. Our results show that NIADH performs better than that of the existing protocols in majority of the scenarios.  相似文献   

5.
This letter considers the effect of channel estimation errors on the performance of space-time coded (STC) systems with transmit and receive antenna selection over quasi-static flat fading channels. By performing pairwise error probability analysis and presenting numerical examples, we show that the diversity order achieved with perfect channel state information (CSI) is still achievable with imperfect CSI used both at the antenna selection and the space-time decoding processes. We note that our results apply to general STC systems with both transmit and/or receive antenna selection based on largest received powers which can be estimated by any channel estimator.  相似文献   

6.
We propose a novel architecture with MAC and admission control protocols for a high-capacity packet-switched optical ring network. In this network the link capacity significantly exceeds the node bit rate. Nodes transmit and receive packets on multiple wavelengths in parallel by using novel optical techniques. Network control is simple since the load is balanced over wavelengths at the physical layer. The MAC protocol is based on credits, and the derived admission control protocol has similar complexity as in a single channel network. Consequently, the network can follow fast traffic changes which are typical in data networks  相似文献   

7.
This paper presents an analytical approach to model the bi‐directional multi‐channel IEEE 802.11 MAC protocols (Bi‐MCMAC) for ad hoc networks. Extensive simulation work has been done for the performance evaluation of IEEE 802.11 MAC protocols. Since simulation has several limitations, this work is primarily based on the analytical approach. The objective of this paper is to show analytically the performance advantages of Bi‐MCMAC protocol over the classical IEEE 802.11 MAC protocol. The distributed coordination function (DCF) mode of medium access control (MAC) is considered in the modeling. Two different channel scheduling strategies, namely, random channel selection and fastest channel first selection strategy are also presented in the presence of multiple channels with different transmission rates. M/G/1 queue is used to model the protocols, and stochastic reward nets (SRNs) are employed as a modeling technique as it readily captures the synchronization between events in the DCF mode of access. The average system throughput, mean delay, and server utilization of each MAC protocol are evaluated using the SRN formalism. We also validate our analytical model by comparison with simulation results. The results obtained through the analytical modeling approach illustrate the performance advantages of Bi‐MCMAC protocols with the fastest channel first scheduling strategy over the classical IEEE 802.11 protocol for TCP traffic in wireless ad hoc networks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Opportunistic spectrum access (OSA) is considered as a promising approach to mitigate spectrum scarcity by allowing unlicensed users to exploit spectrum opportunities in licensed frequency bands. Derived from the existing channel-hopping multiple access (CHMA) protocol,we introduce a hopping control channel medium access control (MAC) protocol in the context of OSA networks. In our proposed protocol,all nodes in the network follow a common channel-hopping sequence; every frequency channel can be used as control channel and data channel. Considering primary users' occupancy of the channel,we use a primary user (PU) detection model to calculate the channel availability for unlicensed users' access. Then,a discrete Markov chain analytical model is applied to describe the channel states and deduce the system throughput. Through simulation,we present numerical results to demonstrate the throughput performance of our protocol and thus validate our work.  相似文献   

9.
The advanced technique of multiple beam antennas is recently considered in wireless networks to improve the system throughput by increasing spatial reuse, reducing collisions, and avoiding co‐channel interference. The usage of multiple beam antennas is similar to the concept of Space Division Multiple Access (SDMA), while each beam can be treated as a data channel. Wireless networks can increase the total throughput and decrease the transmission latency if the physical layer of a mobile node can support multirate capability. Multirate wireless networks incurs the anomaly problem, because low data rate hosts may influence the original performance of high data rate hosts. In this work, each node fits out multiple beam antennas with multirate capability, and a node can either simultaneously transmit or receive multiple data on multiple beams. Observe that the transmitting or receiving operation does not happen at the same time. In this paper, we propose a multiple relay‐based medium access control (MAC) protocol to improve the throughput for low data rate hosts. Our MAC protocol exploits multiple relay nodes and helps the source and the destination to create more than one data channel to significantly reduce the transmission latency. Observe that low data rate links with long‐distance transmission latencies are distributed by multiple relay nodes, hence the anomaly problem can be significantly alleviated. In addition, the ACK synchronization problem is solved to avoid the condition that source nodes do not receive ACKs from destination nodes. An adjustment operation is presented to reduce unnecessary relay nodes during the fragment burst period. Finally, simulation results illustrate that our multiple relay‐based MAC protocol can achieve high throughput and low transmission latency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Opportunistic Feedback for Multiuser MIMO Systems With Linear Receivers   总被引:1,自引:0,他引:1  
A novel multiuser scheduling and feedback strategy for the multiple-input multiple-output (MIMO) downlink is proposed in this paper. It achieves multiuser diversity gain without substantial feedback requirements. The proposed strategy uses per-antenna scheduling at the base station, which maps each transmit antenna at the base station (equivalently, a spatial channel) to a user. Each user has a number of receive antennas that is greater than or equal to the number of transmit antennas at the base station. Zero-forcing receivers are deployed by each user to decode the transmitted data streams. In this system, the base station requires users' channel quality on each spatial channel for scheduling. An opportunistic feedback protocol is proposed to reduce the feedback requirements. The proposed protocol uses a contention channel that consists of a fixed number of feedback minislots to convey channel state information. Feedback control parameters including the channel quality threshold and the random access feedback probability are jointly adjusted to maximize the average throughput performance of this system. Multiple receive antennas at the base station are used on the feedback channel to allow decoding multiple feedback messages sent simultaneously by different users. This further reduces the bandwidth of the feedback channel. Iterative search algorithms are proposed to solve the optimization for selection of these parameters under both scenarios that the cumulative distribution functions of users are known or unknown to the base station  相似文献   

11.
Due to the characteristics of underwater acoustic channel, such as long propagation delay and low available bandwidth, media access control (MAC) protocol designed for the underwater acoustic sensor network (UWASN) is quite different from that for the terrestrial wireless sensor network. However, for the contention-based MAC protocols, the packet transmission time is long because of the long preamble in real acoustic modems, which increase the packet collisions. And the competition phase lasts for long time when many nodes are competing for the channel to access. For the schedule-based MAC protocols, the delay is too long, especially in a UWASN with low traffic load. In order to resolve these problems, a hybrid reservation-based MAC (HRMAC) protocol is proposed for UWASNs in this paper. In the proposed HRMAC protocol, the nodes reserve the channel by declaring and spectrum spreading technology is used to reduce the collision of the control packets. Many nodes with data packets to be transmitted can reserve the channel simultaneously, and nodes with reserved channel transmit their data in a given order. The performance analysis shows that the proposed HRMAC protocol can improve the channel efficiency greatly. Simulation results also show that the proposed HRMAC protocol achieves better performance, namely higher network throughput, lower packet drop ratio, smaller end-to-end delay, less overhead of control packets and lower energy overhead, compared to existing typical MAC protocols for the UWASNs.  相似文献   

12.
在多输入多输出(MIMO)系统中,天线选择技术平衡了系统的性能和硬件开销,但大规模MI-MO系统收发端天线选择复杂度问题一直没有得到很好的解决.基于信道容量最大化的准则,采用两个二进制编码字符串分别表示发射端和接收端天线被选择的状态,提出将二进制猫群算法(BCSO)应用于多天线选择中,以MIMO系统信道容量公式作为猫群的适应度函数,将收发端天线选择问题转化为猫群的位置寻优过程.建立了基于BCSO的天线选择模型,给出了算法的实现步骤.仿真结果表明所提算法较之于基于矩阵简化的方法、粒子优化算法具有更好的收敛性和较低的计算复杂度,选择后的系统信道容量接近于最优算法,非常适用于联合收发端天线选择的大规模MIMO系统中.  相似文献   

13.
Spatial Modulation   总被引:3,自引:0,他引:3  
Spatial modulation (SM) is a recently developed transmission technique that uses multiple antennas. The basic idea is to map a block of information bits to two information carrying units: 1) a symbol that was chosen from a constellation diagram and 2) a unique transmit antenna number that was chosen from a set of transmit antennas. The use of the transmit antenna number as an information-bearing unit increases the overall spectral efficiency by the base-two logarithm of the number of transmit antennas. At the receiver, a maximum receive ratio combining algorithm is used to retrieve the transmitted block of information bits. Here, we apply SM to orthogonal frequency division multiplexing (OFDM) transmission. We develop an analytical approach for symbol error ratio (SER) analysis of the SM algorithm in independent identically distributed (i.i.d.) Rayleigh channels. The analytical and simulation results closely match. The performance and the receiver complexity of the SM-OFDM technique are compared to those of the vertical Bell Labs layered space-time (V-BLAST-OFDM) and Alamouti-OFDM algorithms. V-BLAST uses minimum mean square error (MMSE) detection with ordered successive interference cancellation. The combined effect of spatial correlation, mutual antenna coupling, and Rician fading on both coded and uncoded systems are presented. It is shown that, for the same spectral efficiency, SM results in a reduction of around 90% in receiver complexity as compared to V-BLAST and nearly the same receiver complexity as Alamouti. In addition, we show that SM achieves better performance in all studied channel conditions, as compared with other techniques. It is also shown to efficiently work for any configuration of transmit and receive antennas, even for the case of fewer receive antennas than transmit antennas.  相似文献   

14.
Energy-Efficient Routing Schemes for Underwater Acoustic Networks   总被引:2,自引:0,他引:2  
Interest in underwater acoustic networks has grown rapidly with the desire to monitor the large portion of the world covered by oceans. Fundamental differences between underwater acoustic propagation and terrestrial radio propagation may call for new criteria for the design of networking protocols. In this paper, we focus on some of these fundamental differences, including attenuation and noise, propagation delays, and the dependence of usable bandwidth and transmit power on distance (which has not been extensively considered before in protocol design studies). Furthermore, the relationship between the energy consumptions of acoustic modems in various modes (i.e., transmit, receive, and idle) is different than that of their terrestrial radio counterparts, which also impacts the design of energyefficient protocols. The main contribution of this work is an in-depth analysis of the impacts of these unique relationships. We present insights that are useful in guiding both protocol design and network deployment. We design a class of energyefficient routing protocols for underwater sensor networks based on the insights gained in our analysis. These protocols are tested in a number of relevant network scenarios, and shown to significantly outperform other commonly used routing strategies and to provide near optimal total path energy consumption. Finally, we implement in ns2 a detailed model of the underwater acoustic channel, and study the performance of routing choices when used with a simple MAC protocol and a realistic PHY model, with special regard to such issues as interference and medium access.  相似文献   

15.
Wireless networks play an increasingly important role in application areas such as factory-floor automation, process control, and automotive electronics. In this paper, we address the problem of sharing a wireless channel among a set of sporadic message streams where a message stream issues transmission requests with real-time deadlines. For this problem, we propose a collision-free wireless medium access control (MAC) protocol, which implements static-priority scheduling and supports a large number of priority levels. The MAC protocol allows multiple masters and is fully distributed; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus, a proven communication technology for various industrial applications. However, unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel. The evaluation of the protocol with real embedded computing platforms is presented to show that the proposed protocol is in fact collision-free and prioritized. We measure the response times of our implementation and find that the response-time analysis developed for the protocol indeed offers an upper bound on the response times  相似文献   

16.
In distributed multiple access control protocols, two categories of overhead are usually associated with contention resolution. One is channel idle overhead, where all contending stations are waiting to transmit. Another is collision overhead, which occurs when multiple contending stations attempt to transmit simultaneously. Either idle overhead or collision overhead being large, contention resolution algorithm would be inefficient. Prior research work tries to minimize both the idle and the collision overheads using various methods. In this paper, we propose to apply "pipelining" techniques to the design of multiple access control protocol so that channel idle overhead could be (partially) hidden and the collision overhead could be reduced. While the concept of pipelined scheduling can be applied to various MAC protocol designs in general, in this paper, we focus on its application to IEEE 802.11 DCF. In particular, an implicitly pipelined dual-stage contention resolution MAC protocol (named DSCR) is proposed. With IEEE 802.11, the efficiency of contention resolution degrades dramatically with the increasing load due to high probability of collision. Using the implicit pipelining technique, DSCR hides the majority of channel idle time and reduces the collision probability, hence, improves channel utilization, average access delay, and access energy cost over 802.11 significantly both in wireless LANs and in multihop networks. The simulation results, as well as some analysis, are presented to demonstrate the effectiveness of DSCR.  相似文献   

17.
为了更进一步减少信道冲突和网络能耗,提出一种基于令牌的链式无线传感器网络MAC协议.协议自定义信标帧和数据帧,在传感器节点完成时间同步后,以信标帧中的令牌为控制信息对相邻两个传感器节点进行收发控制,实现数据从链尾节点到链头节点的顺序上传.研究表明,该协议不仅能够满足系统的稳定性要求而且能够有效降低功耗.  相似文献   

18.
In this paper we address the issue of optimizing the performance of data-link and transport protocols running on a system including multiple transmit and receive antennas with a V-BLAST architecture. More specifically, we explore the possibility of adaptively selecting which transmit antennas and which per antenna rates to use as well as the antenna transmit powers in order to maximize the rate of data packets successfully delivered through the system. This is a novel approach with respect to the recent literature which is generally focused on channel capacity optimization. We show that the use of this rate/power adaptation technique, when a data transmission protocol is running over the link, may lead to significant throughput improvements especially at small signal-to-noise ratios.  相似文献   

19.
Khatri-Rao space-time codes   总被引:1,自引:0,他引:1  
Space-time (ST) coding techniques exploit the spatial diversity afforded by multiple transmit and receive antennas to achieve reliable transmission in scattering-rich environments. ST block codes are capable of realizing full diversity and spatial coding gains at relatively low rates; ST trellis codes can achieve better rate-diversity tradeoffs at the cost of high complexity. On the other hand, V-BLAST supports high rates but has no built-in spatial coding and does not work well with fewer receive than transmit antennas. We propose a novel linear block coding scheme based on the Khatri-Rao matrix product. The proposed scheme offers flexibility for achieving full-rate or full-diversity, or a desired rate-diversity tradeoff, and it can handle any transmit/receive antenna configuration or signal constellation. The proposed codes are shown to have numerous desirable properties, including guaranteed unique linear decodability, built-in blind channel identifiability, and efficient near-maximum likelihood decoding.  相似文献   

20.
Transmit power rise (TPR) in code-division multiple-access (CDMA) systems can be defined as the ratio of the average transmit power to the average receive power, where the average total channel power attenuation is assumed to be one. The TPR has been practically used in the universal mobile telecommunications system radio network planning for modeling of the joint impact of the fast power control, the propagation channel power attenuations, and the antenna diversity. In this letter, we present a general analytical formula for the calculation of TPR in CDMA systems with fast power control, for an arbitrary multipath power profile, arbitrary numbers of transmit and receive antennas, and arbitrary maximum transmit power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号