首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exhaust gas-fuel reforming technique known as reformed exhaust gas recirculation (REGR) can generate on-board hydrogen-rich gas mixture (i.e., reformate) by catalytic reforming of the exhaust gas and fuel added into the reformer and then recirculate the reformate into the engine cylinder, which can realize the combination of hydrogen-rich lean combustion and exhaust gas recirculation. The REGR technique can be employed to achieve efficient and stable lean-burn combustion for the marine engine fueled with natural gas (i.e., marine NG engine) and it is considered as an effective way to meet the stringent ship emissions regulations. In the present study, an experimental investigation into the effects of reformate addition ratio (Rre) and excess air ratio (λ) on the combustion and emissions characteristics of a marine NG engine under various loads was conducted, and the potential of applying the REGR technique in a marine NG engine to achieve low emissions (i.e., International Maritime Organization Tier Ⅲ emissions legislations for international ships) was discussed. The results indicate that the addition of the hydrogen-rich reformate gases can extend lean-burn limit. For a given λ, the flame development duration and rapid combustion duration decrease with the increase of Rre, and the combustion efficiency is improved. The brake specific NOx emissions first increase and then decrease with the increase of Rre due to the competition between the combustion phase and total heat release value. The brake specific THC emissions decline with the increase of Rre, while the reverse holds for the brake specific CO emissions, and the behavior tends to be obvious under large λ. It is demonstrated that the combination of REGR and the lean-burn combustion strategy can improve the trade-off relationship between the NOx emissions and brake specific fuel consumption of the marine NG engine to meet the IMO Tier Ⅲ NOx emissions legislations and maintain relatively low brake specific fuel consumption.  相似文献   

2.
Analysis of reformed EGR on the performance of a diesel particulate filter   总被引:1,自引:0,他引:1  
The use of a diesel particulate filter (DPF) in combination with an upstream diesel oxidation catalyst (DOC) has been successfully implemented and shown to reduce carbon monoxide (CO), hydrocarbon (HC) and Particulate Matter (PM) diesel exhaust gas emissions. However issues including cost, size and uncontrolled active regeneration under a low temperature window still require attention. This study therefore primarily focuses on the potential benefits of using a single catalytic coated DPF (cDPF) and a combined DOC-cDPF instead of the DOC-DPF aftertreatment system utilising a passive, low temperature regeneration method. Comparisons were made through monitoring exhaust gas compositions from an experimental single cylinder diesel engine as well as measuring the pressure drop across the filters to analyse the accumulation of soot particles. The influence of reformed EGR (REGR), enriched simulated hydrogen (H2) and CO, on DPF and cDPF soot loading was of interest as H2 promotes the NO to NO2 oxidation. Similarly the addition of simulated reformate (added either directly into the engine intake or exhaust manifold) for optimal performance of the aftertreatment systems was examined.The effects of adding REGR resulted in a significant decrease in total engine-out NOx emissions, as well as an increase in both NO2 concentration and NO2/NOx ratio. This resulted in improved filter efficiency and overall loading, especially under a DOC-cDPF aftertreatment configuration system. As a whole, a simultaneous NOx and PM reduction was achieved.  相似文献   

3.
This paper investigates the emissions of the unburned gaseous fuels of a heavy-duty diesel engine converted to operate under natural gas (NG)-diesel and hydrogen (H2)-diesel dual fuel combustion mode. The detailed effects of the addition of H2, NG, engine load, and engine speed on the exhaust emissions of the unburned H2, methane (CH4), and carbon monoxide (CO) were experimentally investigated. The combustion efficiencies of CH4 and H2 supplemented were also examined and compared.  相似文献   

4.
Exhaust gas fuel reforming has been identified as a thermochemical energy recovery technology with potential to improve gasoline engine efficiency, and thereby reduce CO2 in addition to other gaseous and particulate matter (PM) emissions. The principle relies on achieving energy recovery from the hot exhaust stream by endothermic catalytic reforming of gasoline and a fraction of the engine exhaust gas. The hydrogen-rich reformate has higher enthalpy than the gasoline fed to the reformer and is recirculated to the intake manifold, i.e. reformed exhaust gas recirculation (REGR).  相似文献   

5.
This work presents an experimental study describing a six-cylinder spark ignition engine running with a lean equivalence ratio, high compression ratio, ignition delay and used in a cogeneration system (heat and electricity production). Three types of fuels; natural gas, pure methane and methane/hydrogen blend (85% CH4 and 15% H2 by volume), were used for comparison purposes. Each fuel has been investigated at 1500 rpm and for various engine loads fixed by electrical power output conditions. CO, CO2, HC, and NOx emissions values, and exhaust gas temperature were measured. The effect of fuel composition on engine characteristics has been studied. The results show, that the hydrogen addition increased HC emissions (around 18%), as well as performance, whilst it reduced NOx (around 31%), exhaust gas temperature, CO and CO2.  相似文献   

6.
The effects of reformed exhaust gas recirculation (REGR) on combustion and emissions of dimethyl ether (DME) homogeneous charge compression ignition (HCCI) engines are studied by multi-dimensional CFD coupled with chemical kinetic model. The results show that REGR combing EGR and DME reformed gases (DRG) improves combustion and emissions. REGR can delay ignition time by both EGR and DRG, and makes main combustion closer to top dead center (TDC), which is beneficial to reducing compression negative work and broadening load range of HCCI engines. The interaction of DRG and EGR helps avoid too high pressure rise rate or low power performance when being applied independent of each other. HC, CO and NOx emissions can be controlled simultaneously by REGR. Both advantages of DRG and EGR are used to decrease the emissions of HCCI engines by REGR, while the disadvantages of high emissions are alleviated when one of them is applied.  相似文献   

7.
H.E. Saleh 《Renewable Energy》2009,34(10):2178-2186
Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NOx emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NOx emissions can be attained within a limited EGR rate of 5–15% with very little economy penalty.  相似文献   

8.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

9.
Performance and emission characteristics of two compression ignited engines of different compression ratios, number of cylinders, cooling system, and power output are studied. Waste vegetable oil-derived biofuel is used. Engines are fueled with B0, B20 and B100 mixtures. Thermal efficiency, brake specific consumption and engine emissions (CO, Unburned HC, O2 and NO) are reported and comparisons are made for fuel mixtures running on both engines. Trends of emissions and performance curves are compared to the literature of the available data. It is noted that the biofuel certainly affects unburned HC emissions regardless of engine specifications and/or operating conditions. However, the type of fuel or adding biofuel to diesel may not affect parameters such as exhaust gas temperature and emissions (CO, Unburned HC, O2, NO). These parameters may change as functions of engine specifications and operating conditions regardless of biofuel or diesel being used. These findings are supported by separate investigations using different biofuels in literature.  相似文献   

10.
Reformed exhaust gas recirculation technology has attracted great attention in internal combustion engines. A platform of an exhaust gas-fuel reformer connected with the marine LNG engine was set up for generating on-board hydrogen. Based on the platform, effects of the methane to oxygen ratio (M/O) and reformed exhaust gas ratio (REG) from the reformer and excess air ratio (λ) from the engine on the components, hydrogen yield, thermal efficiency and reforming process of the reformer were experimentally investigated. Results shown that hydrogen-rich gases (reformate) can be generated by reforming the mixture of engine exhaust gas (about 400 °C) and methane supplied via the reformer with Ni/Al2O3 catalyst, and the hydrogen concentration of reformate was between 6.2% and 12.6% by volume. The methane supplied rate and λ affected the components and temperature of the reactant in the reformer, while REG changed the gas hour space velocity during the exhaust gas-fuel reforming processes, resulting in the difference in the components of the reformate and thermal efficiency. At the present experimental condition, the highest H2 concentration reformate was generated under the M/O of 2.0, λ of 1.55 and REG of 6%.  相似文献   

11.
Hydrogen on-board fuel reforming has been identified as a waste energy recovery technology with potential to improve Internal combustion engines (ICE) efficiency. Additionally, can help to reduce CO2, NOx and particulate matter (PM) emissions. As this thermochemical energy is recovered from the hot exhaust stream and used in an efficient way by endothermic catalytic reforming of petrol mixed with a fraction of the engine exhaust gas. The hydrogen-rich reformate has higher enthalpy than the petrol fed to the reformer and is recirculated to the intake manifold, which will be called reformed exhaust gas recirculation (rEGR).The rEGR system has been simulated by supplying hydrogen (H2) and carbon monoxide (CO) into a conventional Exhaust Gas Recirculation (EGR) system. The hydrogen and CO concentrations in the rEGR stream were selected to be achievable in practice at typical gasoline exhaust temperatures (temperatures between 300 and 600 °C). A special attention has been paid on comparing rEGR to the baseline ICE, and to conventional EGR. The results demonstrate the potential of rEGR to simultaneously increase thermal efficiency, reduce gaseous emissions and decrease PM formation.Complete fuel reformation can increase the calorific value of the fuel by 28%. This energy can be provided by the waste heat in the exhaust and so it is ideal for combination with a gasoline engine with its high engine-out exhaust temperatures.The aim of this work is to demonstrate that exhaust gas fuel reforming on an engine is possible and is commercially viable. Also, this paper demonstrates how the combustion of reformate in a direct injection gasoline engine via reformed Exhaust Gas Recirculation (rEGR) can be beneficial to engine performance and emissions.  相似文献   

12.
In this study, an experimental study on the performance and exhaust emissions of a spark-ignition engine fuelled with methane–hydrogen mixtures (100% CH4, 10% H2 + 90% CH4, 20% H2 + 80% CH4, and 30% H2 + 70% CH4) were performed at different engine speeds and different excessive air ratios. This present work was carried out on a Ford engine. This is a four-stroke cycle four-cylinder spark-ignition engine with a bore of 80.6 mm, a stroke of 88 mm and a compression ratio of 10:1. Experiments were performed at 1500, 2000, 2500 and 3000 rpm and at wide open throttle (WOT). CO, CO2 and HC emission values and cylinder pressure were measured. The results showed that while the speed and excessive air ratio increase, CO emission values decrease. The reduction of HC and CO emissions could be obtained by adding hydrogen into the natural gas when operating on the lean mixture condition. Increasing the excessive air ratio also decreases the maximum peak cylinder pressure.  相似文献   

13.
《Applied Thermal Engineering》2007,27(11-12):1904-1910
A 3-cylinder port fuel injection engine was adopted to study engine power, torque, fuel economy, emissions including regulated and non-regulated pollutants and cold start performance with the fuel of low fraction methanol in gasoline. Without any retrofit of the engine, experiments show that the engine power and torque will decrease with the increase fraction of methanol in the fuel blends under wide open throttle (WOT) conditions. However, if spark ignition timing is advanced, the engine power and torque can be improved under WOT operating conditions. Engine thermal efficiency is thus improved in almost all operating conditions. Engine combustion analyses show that the fast burning phase becomes shorter, however, the flame development phase is a little delay.When methanol/gasoline fuel blends being used, the engine emissions of carbon monoxide (CO) and hydrocarbon (HC) decrease, nitrogen oxides (NOx) changes little prior to three-way catalytic converter (TWC). After TWC, the conversion efficiencies of HC, CO and NOx are better. The non-regulated emissions, unburned methanol and formaldehyde, increase with the fraction of methanol, engine speed and load, and generally the maximum concentrations are less than 200 ppm. Experimental tests further prove that methanol and formaldehyde can be oxidized effectively by TWC. During the cold start and warming-up process at 5 °C, with methanol addition into gasoline, HC and CO emissions decrease obviously. HC emission reduces more than 50% in the first few seconds (cold start period) and nearly 30% in the following warming-up period, CO reduces nearly 25% when the engine is fueled with M30. Meanwhile, the temperature of exhaust increases, which is good to activate TWC.  相似文献   

14.
To meet stringent vehicular exhaust emission norms worldwide, several exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Exhaust Gas Recirculation (EGR) is a pre-treatment technique, which is being used widely to reduce and control the oxides of nitrogen (NOx) emission from diesel engines. EGR controls the NOx because it lowers oxygen concentration and flame temperature of the working fluid in the combustion chamber. However, the use of EGR leads to a trade-off in terms of soot emissions. Higher soot generated by EGR leads to long-term usage problems inside the engines such as higher carbon deposits, lubricating oil degradation and enhanced engine wear. Present experimental study has been carried out to investigate the effect of EGR on soot deposits, and wear of vital engine parts, especially piston rings, apart from performance and emissions in a two cylinder, air cooled, constant speed direct injection diesel engine, which is typically used in agricultural farm machinery and decentralized captive power generation. Such engines are normally not operated with EGR. The experiments were carried out to experimentally evaluate the performance and emissions for different EGR rates of the engine. Emissions of hydrocarbons (HC), NOx, carbon monoxide (CO), exhaust gas temperature, and smoke opacity of the exhaust gas etc. were measured. Performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC) were calculated. Reduction in NOx and exhaust gas temperature were observed but emissions of particulate matter (PM), HC, and CO were found to have increased with usage of EGR. The engine was operated for 96 h in normal running conditions and the deposits on vital engine parts were assessed. The engine was again operated for 96 h with EGR and similar observations were recorded. Higher carbon deposits were observed on the engine parts operating with EGR. Higher wear of piston rings was also observed for engine operated with EGR.  相似文献   

15.
This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards.ResultsIndicated that the engine operating on turpentine oil fuel at manufacture's injection pressure – time setting (20.5 MPa and 23° BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NOx, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted.  相似文献   

16.
A comparative analysis is being performed of the engine performance and exhaust emission on a gasoline and compressed natural gas (CNG) fueled retrofitted spark ignition car engine. A new 1.6 L, 4-cylinder petrol engine was converted to the computer incorporated bi-fuel system which operated with either gasoline or CNG using an electronically controlled solenoid actuated valve mechanism. The engine brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature and exhaust emissions (unburnt hydrocarbon, carbon mono-oxide, oxygen and carbon dioxides) were measured over a range of speed variations at 50% and 80% throttle positions through a computer based data acquisition and control system. Comparative analysis of the experimental results showed 19.25% and 10.86% reduction in brake power and 15.96% and 14.68% reduction in brake specific fuel consumption (BSFC) at 50% and 80% throttle positions respectively while the engine was fueled with CNG compared to that with the gasoline. Whereas, the retrofitted engine produced 1.6% higher brake thermal efficiency and 24.21% higher exhaust gas temperature at 80% throttle had produced an average of 40.84% higher NOx emission over the speed range of 1500–5500 rpm at 80% throttle. Other emission contents (unburnt HC, CO, O2 and CO2) were significantly lower than those of the gasoline emissions.  相似文献   

17.
采用傅里叶变换红外线光谱仪研究了当量比天然气发动机的N H3排放,重点研究了不同工况下三元催化器(three-way catalyst,TWC)前的NOx、CO、CH4排放特性和TWC后的NH3排放特性.结果表明:当量比天然气发动机原始排气中无NH3排放,发动机原始排气经过TWC后的催化反应才是当量比天然气发动机NH3...  相似文献   

18.
降低汽油机起动及暖机过程中HC排放的探讨   总被引:15,自引:4,他引:15  
根据实测的催化器入口、出口 HC排放浓度及排气管不同位置的温度 ,结合示功图对电喷汽油机冷起动时 HC排放量在台架上进行了模拟分析 ,将起动过程以节气门突开为界划分为 3个阶段 ,其中HC的主要排放量发生在开始起动到节气门开这一段时间内。通过控制点火提前角使缸内发生不完全燃烧 ,将燃烧延续到排气管内 ,即可降低 HC排放量 ,也有助于加速催化器起燃。  相似文献   

19.
《Applied Thermal Engineering》2002,22(11):1217-1229
The operation of a cogeneration internal combustion engine with unscavenged prechamber ignition was investigated. The objective was to evaluate the potential to reduce the exhaust gas emissions, particularly the CO emissions without exhaust gas after treatment. The investigation was carried out on a small size gas engine (150 kW) and required the development of cooled prechambers and the modification of the engine cylinder heads. The limit of the conventional lean burn operating mode with direct ignition is discussed and the prechamber geometrical configuration is presented. Through the generation of gas jets in the main chamber, the use of a prechamber strongly intensifies and accelerates the combustion process. The prechamber operation reduces significantly the emissions of CO and total hydrocarbon (THC) for same NOx emissions. The use of a piston generating significantly more turbulence leads to a somewhat higher fuel conversion efficiency without affecting significantly the CO and THC emissions at low NOx emissions. Further improvement associated with the adjustment of the engine operating parameters and the turbocharger characteristics, as well as a comparison between direct and prechamber ignition operation are presented in the second part (II) of this publication.  相似文献   

20.
以Z6170型柴油机改造后的进气总管喷射进气柴油/LNG双燃料发动机为研究对象,在Fluent软件环境中,运用动网格技术模拟气门重叠期天然气逃逸过程,定量分析转速、进气提前角和排气迟闭角对双燃料发动机气门重叠期天然气逃逸的影响。仿真结果表明:进气总管喷射进气双燃料发动机气门重叠期存在天然气逃逸现象;在其他条件相同的情况下,发动机转速升高,一个工作循环内气门重叠期CH_4逃逸量减少;气门重叠角大小对气门重叠期CH_4逃逸的影响最大,特别是进气提前角影响尤为突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号