共查询到20条相似文献,搜索用时 15 毫秒
1.
Samira Fatma Kurtoğlu Seda Sarp Ceren Yılmaz Akkaya Barış Yağcı Amir Motallebzadeh Sezen Soyer-Uzun Alper Uzun 《International Journal of Hydrogen Energy》2018,43(21):9954-9968
Sepiolite, a clay mineral, was utilized as a support for nickel-based catalysts for COx-free hydrogen production from ammonia decomposition. First, the physical and chemical properties of sepiolite were changed by calcining it at temperatures varying from 500 to 1000 °C, then nickel was impregnated on these calcined supports and tested for ammonia decomposition at various temperatures following reduction at 650 °C. Results indicated that even though the catalysts contained almost the same amount of nickel, they showed different hydrogen production performance. Detailed characterization of the catalysts before and after reaction illustrated that the support obtained by calcining sepiolite at 700 °C shows good basic properties with a high surface area offering a high degree of nickel dispersion. These properties lead to promising hydrogen production rates which are on par, if not higher, than most of the nickel-based catalysts prepared on supports, which are either not cheap or require tedious preparation procedures. 相似文献
2.
Gang Li Masakoto KanezashiHye Ryeon Lee Makoto MaedaTomohisa Yoshioka Toshinori Tsuru 《International Journal of Hydrogen Energy》2012
A novel bimodal catalytic membrane reactor (BCMR) consisting of a Ru/γ-Al2O3/α-Al2O3 bimodal catalytic support and a silica separation layer was proposed. The catalytic activity of the support was successfully improved due to enhanced Ru dispersion by the increased specific surface area for the γ-Al2O3/α-Al2O3 bimodal structure. The silica separation layer was prepared via a sol–gel process, showing a H2 permeance of 2.6 × 10−7 mol Pa−1 m−2 s−1, with H2/NH3 and H2/N2 permeance ratios of 120 and 180 at 500 °C. The BCMR was applied to NH3 decomposition for COx-free hydrogen production. When the reaction was carried out with a NH3 feed flow rate of 40 ml min−1 at 450 °C and the reaction pressure was increased from 0.1 to 0.3 MPa, NH3 conversion decreased from 50.8 to 35.5% without H2 extraction mainly due to the increased H2 inhibition effect. With H2 extraction, however, NH3 conversion increased from 68.8 to 74.4% due to the enhanced driving force for H2 permeation through the membrane. 相似文献
3.
Jiakuan Yang Xinyu Xu Sha Liang Ruonan Guan Hongsen Li Ye Chen Binchuan Liu Jian Song Wenbo Yu Keke Xiao Huijie Hou Jingping Hu Hong Yao Bo Xiao 《International Journal of Hydrogen Energy》2018,43(16):7795-7807
The catalytic mechanism of red mud (RM) on the pyrolysis of sewage sludge was investigated. The thermogravimetric data were used to study the kinetic characteristics by using a discrete distributed activation energy model (DAEM) to clarify the effects of three main components (Fe2O3, Al2O3, SiO2) in the RM on the pyrolysis of organic matters in sewage sludge. The modeling results showed that the pyrolysis of organic matters, especially at the higher temperature stage, was promoted by Fe2O3 and Al2O3 in the RM. Adding Fe2O3 or the RM alone could reduce the mean activation energy of sewage sludge pyrolysis by 13.9 and 20.1 kJ mol?1, respectively. The modeling results were validated by pyrolysis experiments of raw sludge with different additives at 600, 700, 800, and 900 °C. The experimental results showed that the addition of Al2O3, Fe2O3 or the RM could produce more gas than the addition of SiO2, especially at high temperatures. Fe2O3 and Al2O3 acted as catalysts in the tar decomposition by in-situ catalyzing the cracking of CC and CH bonds to produce more gases. Especially, Fe2O3 and Al2O3 increased the H2 yield from sewage sludge pyrolysis at 700, 800, and 900 °C by 268.5 and 50.7%, 111.1 and 56.0%, 10.9 and 10.3%, respectively. The char obtained from pyrolysis of sewage sludge with the RM possessed magnetic property, which has various potential applications. The research indicates that the RM is an efficient catalyst in the pyrolysis of sewage sludge. 相似文献
4.
Zhong-Pan Hu Chen-Chen Weng Ge-Ge Yuan Xian-Wei Lv Zhong-Yong Yuan 《International Journal of Hydrogen Energy》2018,43(20):9663-9676
A wet impregnation method is used to synthesize Ni nanocatalysts supported on naturally abundant mica nanosheets for decomposition of ammonia to COx-free hydrogen. The prepared catalysts are characterized by XRD, SEM, TEM, N2 sorption, TG, XPS, H2-TPR and NH3/H2-TPD techniques. The catalytic tests exhibit that the Ni/mica catalysts are highly active for ammonia decomposition. The two-dimensional structure of mica favors mass transportation, which can remarkably promote the catalytic process. The NH3/H2-TPD curves of Ni/mica show no desorption signals of NH3 and H2, indicating the presence of weak desorption energy barrier. The content of Ni in the catalysts is related to the crystallite size of Ni species, affecting their catalytic properties. As demonstrated in this study, the Ni/mica catalyst with 15% Ni loading amount exhibits the highest catalytic activity and long-term stability. At a high space velocity of 30000 cm3 gcat?1 h?1, 97.2% ammonia conversion is achieved over the 15%Ni/mica catalyst at 650 °C, indicating the Ni/mica is a promising catalyst for ammonia decomposition. 相似文献
5.
Seetharamulu Podila Hafedh Driss Sharif F. Zaman Arshid M. Ali Abdulrahim A. Al-Zahrani Muhammad A. Daous Lachezar A. Petrov 《International Journal of Hydrogen Energy》2017,42(38):24213-24221
This work deals with the effect of catalyst preparation method of the mixed Co, Mg and La oxide catalysts on their structure and catalytic properties for ammonia decomposition. Two methods are used for catalysts preparations impregnation and co-precipitation (in air and in pure O2 atmosphere), The Mg/La = 2 molar ratio and 5 wt% of cobalt content was maintained same in all catalysts. The catalyst performance was evaluated in the temperature range 300–550 °C at atmospheric pressure. The prepared catalysts were characterized by BET, XRD, TPR, XPS, CO2-TPD and SEM techniques. No pronounced differences were observed in BET among the catalysts. It was found that the 5CML-OXY (5 wt%Co over MgLa catalyst prepared by co-precipitation method in oxygen atmosphere) has superior activity among the other catalysts. This could be attributed to availability of easily reducible cobalt species determined by TPR studies and enhanced interaction between Mg and La determined by SEM and XPS. The moderate basic site density determined by CO2-TPD results was also increased in 5CML–OXY catalysts compared with other catalysts. These consequences are might be one of the reasons for enhanced activity of 5CML–OXY catalyst compared to other catalysts. Hence catalyst preparation by co-precipitation in oxygen atmosphere is the best method which might be one of the parameters that influenced on catalytic properties of the cobalt on MgOLa2O3 system, for ammonia decomposition. 相似文献
6.
《International Journal of Hydrogen Energy》2014,39(35):20731-20735
Basic oxides such as alkali metal oxides, alkaline earth metal oxides, and rare earth oxides were added to Ru/Pr6O11, and the activity of the catalysts with respect to hydrogen production by ammonia decomposition was investigated. Ru/Pr6O11 doped with alkali metal oxides, except for Li2O, achieved higher NH3 conversions than bare Ru/Pr6O11. Cs2O, the most basic of the alkali metal oxides, was the most effective dopant. In contrast, other dopants with lower basicity than the alkali metal oxides achieved lower NH3 conversions than bare Ru/Pr6O11. Changing the Cs/Ru molar ratio revealed that the best Cs/Ru ratio was 0.5–2; the reaction was effectively promoted without negative effects from coverage of the Ru surface by the Cs2O. Varying the order of loading the Ru and Cs2O onto Pr6O11 revealed that loading Ru onto Cs2O/Pr6O11 was an effective way to enhance NH3 conversion, and coverage of the Ru surface was reduced. 相似文献
7.
R. Gil-San-Millan A. Grau-Atienza D.T. Johnson S. Rico-Francés E. Serrano N. Linares J. García-Martínez 《International Journal of Hydrogen Energy》2018,43(36):17100-17111
A novel multifunctional catalytic system has been developed for efficient hydrogen generation through the hydrolysis of ammonia borane. This system combines Pd NPs with acid sites and amines, which are both task-specific functionalities able to destabilize the N → B dative bond. The acidity of the support (zeolites of different structure and SiO2/Al2O3 ratio) used to disperse the Pd NPs causes an increase in the hydrogen production rate. However, the positive effect of incorporating p-phenylenediamine in the catalyst is much more pronounced, causing a two-fold increase in the activity of the catalyst. The combined effect of the different functionalities yields excellent performance in the hydrolysis of ammonia borane, greatly enhancing the activity of the metal-based catalyst and reducing the activation energy of the catalyzed reaction. 相似文献
8.
Hui Zhang Yahia Abobakor Alhamed Yoshitsugu Kojima Abdulrahim Ahmed Al-Zahrani Hiroki Miyaoka Lachezar Angelov Petrov 《International Journal of Hydrogen Energy》2014
The structure and catalytic properties of nickel catalysts supported on multi-wall carbon nanotubes (MWCNTs) and on three different types of activated carbon (AC) were studied. The surface areas of AC carriers were defining the size of supported nickel particles. Large surface area of AC led to small Ni nanoparticles and high Ni dispersion. Turnover frequency (TOFNH3) of ammonia decomposition decreased with decreasing of Ni particle size. The highest degree of ammonia conversion was observed on Ni/AC prepared by using of AC support with largest surface area. The catalytic activity of Ni/MWCNTs was much higher than catalytic activity of the studied Ni/AC catalysts. The synergic nickel-support interaction and special electronic conductivity properties of MWCNTs were responsible for high catalytic activity of Ni/MWCNTs catalyst. 相似文献
9.
Hydrogen, an environment-friendly energy source, is deemed to become strongly in demand over the next decades. In this work, COx-free hydrogen was produced by the thermal catalytic decomposition (TCD) of methane by a carbon catalyst. Deactivated catalysts at four-stage of progressive were characterized by nitrogen sorption and scanning electron microscopy. TCD of methane at 820 and 940 °C was about 13- and 8-folds higher than non-catalytic decomposition, respectively. High temperatures positively affected the kinetics of hydrogen production but negatively influenced the total amount of hydrogen and carbon products. The total pore volume was a good indicator of the total amount of hydrogen product. Catalyst activity was decreased because of the changes in the catalyst's textural properties within three ranges of relative time, that is, 0 to 45, 0.45 to 0.65, and 0.65 to 1. Models for specific surface area and total pore volume as functions of catalyst deactivation kinetics were developed. 相似文献
10.
Katsutoshi Sato Naruhiko Abe Takafumi Kawagoe Shin-ichiro Miyahara Kyoko Honda Katsutoshi Nagaoka 《International Journal of Hydrogen Energy》2017,42(10):6610-6617
Ni catalysts with high surface areas were prepared from Mg–Al hydrotalcite-like compounds containing Ni with different Mg-to-Al ratios for the production of hydrogen via ammonia decomposition. At atomic ratios of Mg-to-Al from 3:1 to 6:1, Ni reduction was greater than 90%, and the amounts of Ni0 exposed were kept at more than 200 μmol g?1. With the increase in Mg-to-Al ratio, turnover frequency was increased due to an increase in the basicity of the support. Of the catalysts examined, Ni_MgAl(6:1) exhibited the highest NH3 conversion, which was attributed to its relatively high basicity and large amount of Ni0 exposed. 相似文献
11.
Jiang Jing Luming Li Wei Chu Yahui Wei Chengfa Jiang 《International Journal of Hydrogen Energy》2018,43(27):12059-12068
High performance copper-based catalysts (CuNiZnO/γ-Al2O3) for hydrogen production from methanol decomposition were successfully synthesized by the method of microwave-assisted thermal hydrolysis of urea. The ICP-OES, N2 adsorption–desorption, SEM, TEM, XRD and H2-TPR were applied to characterize the physicochemical properties of the prepared materials. These experiment results reveal that the higher thermal treatment temperature can improve the catalytic performance by enlarging the content of promoters (Zn and Ni) and promoting the dispersion of deposited particles. Moreover, the addition of Ni can significantly improve the catalytic performance of the copper-based catalysts, which is ascribed to the regulation of reaction process and inhibition of CuZn alloy. Among the obtained catalysts, the MW-Cu/Ni-95 developed at 95 °C exhibits a higher catalytic activity, which reaches 91.7% conversion at 250 °C. Most significantly, it shows the excellent catalytic performance as compared with the commercial catalyst under the same test conditions. 相似文献
12.
Yanwei Zhang Junhu Zhou Zhihua Wang Jianzhong Liu Kefa Cen 《International Journal of Hydrogen Energy》2008,33(9):2211-2217
A Pt/CeO2 catalyst was prepared by sol–gel method. The as-received sample was successively oxidized, reduced and re-oxidized. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and hydrogen iodide (HI) catalytic decomposition activity evaluation for the sulfur–iodine cycle. The oxidative/reductive atmosphere affected the structure and performance of the catalyst by the strong metal-support interaction (SMSI). It was suggested that a migration of Ce4+ from the bulk to the surface occurred during the reductive treatment. The diffusion process was reversed when the atmosphere was changed to an oxidative one. The decoration or encapsulation of Pt by ceria support changed with the atmosphere, and affected the activity of the catalyst. At temperature below 400 °C, the reduced sample exhibited the best activity. After then the activity of the reduced and re-oxidized samples tends to be the similar, but still better than the as-received and oxidized samples. The surface and interfacial Pt0 sites were both considered as the effective factors. Models were constructed to describe the diffusion of Ce4+ and oxygen vacancies as well as the possible shell-core structure of Pt crystallites and the decoration/encapsulation by ceria support. 相似文献
13.
In this work, a theoretical analysis is developed to predict the decomposition temperature of methane gas, CH4, in a planar stagnation-point flow over a catalytic carbon surface. Hydrogen is produced (without CO2 as a byproduct) by means of a heterogeneous reaction mechanism, which is modeled with five heterogeneous reactions, including adsorption and desorption reactions. The mass species, momentum, and energy conservation equations for the gas phase are solved, taking into account that the temperature of decomposition is characterized by the Damköhler number. Therefore, the critical temperature conditions for the catalytic thermal decomposition are found by using a high activation energy analysis for the desorption kinetics of the adsorbed hydrogen component, H(s). Specifically, the numerical estimations show that, for increasing values of the velocity gradient associated with the stagnation flow, the temperature of decomposition grows, depending on the surface coverages of the product species. 相似文献
14.
Hatice Begüm Murathan Gülay Özkan Meryem Sena Akkuş Derya Öncel Özgür Göksel Özkan 《International Journal of Hydrogen Energy》2018,43(23):10728-10733
The aim of this study is to enable high hydrogen production yield from catalytic methanolysis of ammonia borane (AB) in the presence of a cordierite type ceramic monolithic. The monolithic channel surfaces were coated with Al2O3 by wash-coating method and then this layer was impregnated with 1 wt%Pd-2 wt%Co bimetallic catalyst. SEM-EDX and multi-point BET analysis were used in order to characterize the catalyst. The experimental studies were conducted in a continuous flow type reactor, which was used for the first time in this study. The reactions were carried on low temperature (40 °C), and with various AB feed concentrations and flow rates. It was found that the highest hydrogen production yield (88.5%) was obtained from AB flow rate of 3.3 mL/min, and AB feed concentration of 0.1 wt%. It was concluded that Pd-Co/Al2O3 coated monolithic, which is a stable, active and low-cost catalyst, was a very promising catalyst for on-board hydrogen production from the methanolysis of ammonia borane. 相似文献
15.
Seetharamulu Podila Sharif F. Zaman Hafedh Driss Abdulrahim A. Al-Zahrani Muhammad A. Daous Lachezar A. Petrov 《International Journal of Hydrogen Energy》2017,42(12):8006-8020
Hydrogen production from ammonia decomposition was studied using a series of unsupported high surface area molybdenum nitride (Mo2N) and cobalt promoted molybdenum nitride (3%Co-Mo2N) catalysts prepared with citric acid (CA) as a chelating agent. To elucidate the influence of citric acid amount in preparation conditions on the structure and catalytic activity, we prepared catalysts with different citric acid to Mo molar ratios i.e. CA/Mo = 1, 2, 3 and 4. The catalytic activity was evaluated in the temperature range of 300–600 °C at atmospheric pressure. The catalytic activity of the tested samples has changed in the following order of CA/Mo atomic ratio of 1 < 2 < 3 > 4. Therefore, the catalyst prepared by using CA/Mo ratio = 3 showed the highest catalytic activity. BET, XRD, XPS, SEM and TEM-EDS techniques were been used to characterize the catalysts. The increased activity of Mo2N-3:1 and 3%Co-Mo2N-3:1 catalysts was due to increased surface area, decreased particle size and increased relative proportions of Mo2N and Co3Mo3N phases. The ammonia conversion for 3%Co-Mo2N catalyst was increased from 75 to 97% at 550 °C with the increase of CA/Mo ratio from 1 to 3. This enrichment of activity in 3%Co-Mo2N-3:1 catalyst is due to increased dispersion of Co3Mo3N microstructure on γ-Mo2N platelets confirmed by SEM and TEM results. No deactivation was observed for any catalysts investigated in this study for ammonia decomposition. 相似文献
16.
Bioethanol is one of the most promising renewable energy sources, and it can be used as an alternative to petroleum-derived products. Agro-food residues are the substrates most frequently used for bioethanol production through anaerobic fermentation. The cultivation of olive trees and olive oil production are important economic activities throughout all Mediterranean countries. The wastes derived from olive oil production include a liquid waste, known as Olive Mill Wastewater (OMW), and a semi-solid waste, called Olive Pomace (OP), which is rich is lignin and cellulose materials. The aim of this work is to evaluate the quantity of hydrogen and bioethanol that could be extracted from an OMW-OP mixture after Saccharomyces cerevisiae anaerobic fermentation. In addition, different pretreatments (ultrasonic pretreatment, basic pretreatment, and calcium carbonate addition) have been tested to increase the glucose concentration and, consequently, the bioethanol and hydrogen production in the reaction medium and to decrease the content of inhibiting polyphenols which are mainly present in the OMW. All of the pretreatments were shown to have improved the hydrogen and bioethanol concentration at the end of the fermentation. The basic and ultrasonic pretreatments resulted in the best bioethanol and hydrogen production. These two pretreatments contributed to the hydrolysis of the lignin and cellulose and to increasing the soluble sugars (in particular glucose) content in the reaction mixture. Calcium carbonate addition decreased the polyphenol concentration; the polyphenols inhibit the fermentation mediated by S. cerevisiae. 相似文献
17.
Shahla Karimi Fatemeh Bibak Fereshteh Meshkani Ali Rastegarpanah Jiguang Deng Yuxi Liu Hongxing Dai 《International Journal of Hydrogen Energy》2021,46(39):20435-20480
The thermocatalytic decomposition (TCD) of methane is considered as a milestone towards the production of valuable COx-free hydrogen and carbon nanomaterials without the use of steam or O2. Previous reviews have been aimed at methane decomposition over the different catalysts, such as nickel-based catalysts, non-nickel-based catalysts, metal oxide-supported catalysts, and carbon-supported catalysts. The Ni-based catalysts are suitably applied for methane TCD process due to their high activity and low cost. However, the loss of activity and/or stability with reaction time is one of the most notable challenges in the use of Ni-based catalysts, and a number of studies on the roles of various factors in overcoming such a problem can be found in the literature. Recently, the use of the second metal as a promoter to control catalyst deactivation has attracted much attention. The present review focuses on classification of the different promoters based on the periodic table of elements, such as alkali metals, alkaline earth, transition metals, noble metals, and rare earth metals, and makes a detailed discussion on promotional roles in influencing their physicochemical properties and catalytic performance of the Ni-based catalysts. The generalized structure-performance relationship of the metals-doped catalysts may give an appreciated reference to the design of catalysts with highly pure hydrogen production and carbon nanomaterials. In addition, this review also covers the works on effects of the promoters on nature and morphology of the formed carbon nanomaterials. The use of transition metals (Fe, Co or Cu), noble metal (Pd or Pt), and rare earth metal (La) with a suitable loading as a promoter influenced performance and lifespan of the catalyst and the interaction of Ni particles with the support. Among these promoters, Cu, Pd, La, and Cu–Pd as a dopant have demonstrated superior performance, which was attributed to the capability of these elements in prohibiting carbon accumulation on the active Ni components. 相似文献
18.
Juan Corredor Maria J. Rivero Inmaculada Ortiz 《International Journal of Hydrogen Energy》2021,46(33):17500-17506
The viability of the photocatalytic hydrogen production is closely related to the performance and long term stability of the photocatalyst. In this work rGO/TiO2 composites have been synthetized with graphene oxide (GO) ratios from 1% to 10% and experimentally assessed towards hydrogen generation from methanol solutions. The performance of the composite with 2% of rGO (2 GT) has been compared to bare TiO2 working with 20% volume methanol solution. The hydrogen production initial rate showed similar values with both photocatalysts decreasing after about 24 h. Further analysis of the photocatalytic process at longer times showed the negative influence of hydrogen accumulation in the reaction system. Thus, an experimental procedure with argon purge was developed and the behavior of TiO2 and 2 GT photocatalysts was compared. It is concluded that TiO2 keeps its activity after 8 operation cycles while 2 GT performance reduces progressively. This can be attributed to the further reduction of GO and the increase of defects in its structure. 相似文献
19.
Shu ZhangCheng Lu Nobuhiko TakeichiTetsu Kiyobayashi Nobuhiro Kuriyama 《International Journal of Hydrogen Energy》2011,36(1):634-638
In order to understand the final state of the TiCl3 dopant during the dehydrogenation and rehydrogenation cycles of NaAlH4, we determined the reaction stoichiometry between TiCl3 and NaAlH4 by measuring the amount of hydrogen evolution from NaAlH4 with the varying TiCl3 -load. We found that: (i) TiCl3 reacted with 3 M equivalents of NaAlH4 during the doping process of ball-milling, (ii) the Ti dopant continued to react with NaAlH4 during the first dehydrogenation process until total six equivalents of NaAlH4 were consumed, and (iii) Ti fixed Al, not NaH, so that Al became insufficient during the rehydrogenation process. These findings lead to the conclusion that the reaction stoichiometry between Ti and Al is 1:6, which probably yields TiAl6 and plays a catalytic role in the hydrogen storage reactions of Ti-doped NaAlH4. 相似文献
20.
Mehmet F. Orhan Ibrahim Dincer Marc A. Rosen 《International Journal of Hydrogen Energy》2011,36(17):11309-11320
In this study, we analyze several Cu-Cl cycles by examining various design schemes for an overall system and its components, in order to identify potential performance improvements. The factors that determine the number and effective grouping of steps for new design schemes are analyzed. A thermodynamic analysis and several parametric studies are presented for various configurations. The energy efficiency is found to be 44% for the five-step thermochemical process, 43% for the four-step process and 41% for the three-step process, based on the lower heating value of hydrogen. Also, conclusions regarding implementation of these new configurations are discussed and the potential benefits ascertained. 相似文献