首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syngas has been widely concerned and tested in various thermo-power devices as one promising alternative fuel. However, little is known about the turbulent combustion characteristics, especially on outwardly propagating turbulent syngas/air premixed flames. In this paper, the outwardly propagating turbulent syngas/air premixed flames were experimentally investigated in a constant-volume fan-stirred vessel. Tests were conducted on stoichiometric syngas with different hydrogen volumetric fractions (XH2, 10%–90%) in the ambience with different initial turbulence intensity (u'rms, 0.100 m/s~1.309 m/s). Turbulent burning velocity was taken as the major topic to be studied upon the multi-zone model in constant-volume propagating flame method. The influences of initial turbulent intensity and hydrogen volumetric fraction on the turbulent flame speed were analysed and discussed. An explicit correlation of turbulent flame speed was obtained from the experimental results.  相似文献   

2.
针对生物柴油与醇类混合燃料燃烧机理研究的需求,采用高速纹影光学诊断方法和定容燃烧弹系统试验研究了异丁醇/辛酸甲酯混合燃料的预混层流燃烧特性。测量了不同当量比和初始压力条件下的不同配比混合燃料—空气预混合气的层流燃烧火焰速度,火焰拉伸率以及马克斯坦长度。分析了燃烧初始条件及异丁醇掺混比例对混合燃料的无拉伸层流燃烧速度及火焰不稳定性的影响规律。结果表明:异丁醇/辛酸甲酯混合燃料的拉伸层流火焰传播速度和层流火焰燃烧速度随着当量比的增加先增加后减少,随着初始压力的增加而减小;马克斯坦长度随着当量比和初始压力的增加而减小;异丁醇掺混比例的增加加快了层流火焰燃烧速度,但使得火焰的不稳定性倾向增加。  相似文献   

3.
Hydrogen enriched with compressed natural gas is an efficient and environment-friendly gaseous fuel. However, the safety issues of mixture and the method to control or weaken their combustion are highly concerned. To explore the inhibition effect of halogenated fire suppressants on the mixture, the effect of HFC-227ea on the laminar premixed methane/air flames, with different fractions of H2, have been studied. Burning velocities have been measured with constant-volume combustion chamber and kinetically modelled a recently assembled kinetic mechanism. The fractions of H2 influence the enhancement and inhibition effect of HFC-227ea, and it is less effective with the lean mixture. In stoichiometric condition, HFC-227ea showed good inhibition effect on the mixture flames. The HFC-227ea increased the burning velocities of CH4-0% H2-air and CH4-10% H2-air flames at leanest condition, whereas the increased burning velocity arising from HFC-227ea not occurred as the addition of H2 above 20%. Experimental results coincided well with numerical results, however the agreement was poor for the leanest flames at low agent loading. Lastly, kinetic mechanism analysis was used to interpret the combustion enhancement and inhibition effect of hydrogen-doped methane flame by HFC-227ea.  相似文献   

4.
The effects of hydrogen addition on the laminar premixed-flame characteristics of ethanol–air gaseous mixtures were investigated experimentally by using outwardly propagating spherical flames. The experiments were conducted in a constant-volume combustion vessel with a central ignition at an initial temperature of 383 K, a pressure of 0.1 MPa, a hydrogen fraction from 0% to 100%, and an equivalence ratio from 0.6 to 1.6, and the flame images were obtained by a high-speed schlieren camera system. The results show that the unstretched flame propagation speeds and burning velocities increase exponentially with the increase in hydrogen fraction for a constant equivalence ratio. When the hydrogen fraction is equal to or less than 60%, the burned gas Markstein length reduces with the increase of equivalence ratio, indicating a positive correlation between the flame instability and hydrogen fraction, while the opposite effect is observed when the hydrogen fraction is greater than 60%. At an equivalence ratio below 1.4, the Markstein length decreases with increased hydrogen fraction, indicating that the flame instability is exacerbated with hydrogen addition, while the reverse holds in the case of equivalence ratio above 1.4. Finally, an empirical formula is developed to estimate the laminar burning velocity of ethanol–hydrogen–air flames on the basis of present experimental data.  相似文献   

5.
Hydrogen-rich mixtures generated by the on-board reforming of biomass-derived hydrous-ethanol can be used as a potential alternative fuel (i.e., reformed ethanol fuel, RE fuel). In this paper, outwardly propagating spherical flames were employed to observe the laminar flame characteristics of the gaseous mixtures composed of simulated RE fuel (mixture of 75% hydrous-ethanol and hydrogen) and air in a constant-volume combustion vessel at an initial temperature of 383 K, a pressure of 0.1 MPa, a hydrogen fraction from 0% to 80%, and an equivalence ratio from 0.6 to 1.6. The results show that the unstretched flame propagation speeds and burning velocities increase with increasing hydrogen fraction, especially when the fraction is above 40%. When the hydrogen fraction is less than 40%, the Markstein length and flame instability decrease and increase with the equivalence ratio, respectively, while the reverse holds when the hydrogen fraction is greater than 40%. At an equivalence ratio below 1.4, the Markstein length decreases with increasing hydrogen fraction, indicating a positive correlation between the flame instability and hydrogen fraction. At an equivalence ratio above 1.4, a negative relationship is observed. Finally, it is concluded that a hydrogen fraction of approximately 40% in simulated RE fuel is feasible for spark ignition engines by comparing the laminar burning characteristics of ethanol-air mixtures.  相似文献   

6.
An experimental study was conducted using outwardly propagating flame to evaluate the laminar burning velocity and flame intrinsic instability of diluted H2/CO/air mixtures. The laminar burning velocity of H2/CO/air mixtures diluted with CO2 and N2 was measured at lean equivalence ratios with different dilution fractions and hydrogen fractions at 0.1 MPa; two fitting formulas are proposed to express the laminar burning velocity in our experimental scope. The flame instability was evaluated for diluted H2/CO/air mixtures under different hydrogen fractions at 0.3 MPa and room temperature. As the H2 fraction in H2/CO mixtures was more than 50%, the flame became more unstable with the decrease in equivalence ratio; however, the flame became more stable with the decrease in equivalence ratio when the hydrogen fraction was low. The flame instability of 70%H2/30%CO premixed flames hardly changed with increasing dilution fraction. However, the flames became more stable with increasing dilution fraction for 30%H2/70%CO premixed flames. The variation in cellular instability was analyzed, and the effects of hydrogen fraction, equivalence ratio, and dilution fraction on diffusive-thermal and hydrodynamic instabilities were discussed.  相似文献   

7.
This paper investigated the effects of hydrogen addition to gasoline surrogates fuel-air mixture on the premixed spherical flame laminar combustion characteristics. The experiments were carried out by high speed Schlieren photography on a constant-volume combustion vessel. Combining with nonlinear fitting technique, the variation of flame propagation speed, laminar burning velocity, Markstein length, flame thickness, thermal expansion coefficient and mass burning flux were studied at various equivalence ratios (0.8–1.4) and hydrogen mixing ratios (0%–50%). The results suggested that the nonlinear fitting method had a better agreement with the experimental data in this paper and the flame propagation was strongly effected by stretch at low equivalence ratios. The stretched propagation speed increased with the increase of hydrogen fraction at the same equivalence ratio. For a given hydrogen fraction, Markstein length decreased with the increase of equivalence ratio; flame propagation speed and laminar burning velocity first increased and then decreased with the increase of equivalence ratio while the peaks of the burning velocity shifted toward the richer side with the increase of hydrogen fraction.  相似文献   

8.
In this study, the experiment study about the laminar burning velocity and the flame stability of CO2 diluted natural gas–hydrogen–air mixture was conducted in a constant volume combustion vessel by using the high-speed schlieren photography system. The unstretched laminar burning velocity and the Markstein length at different hydrogen fractions, dilution ratios and equivalence ratios and with different initial pressures were obtained. The flame stability was studied by analyzing the Markstein length, the flame thickness, the density ratio and the flame propagation schlieren photos. The results showed that the unstretched laminar burning velocity would be reduced with the increase of the initial pressure and dilution ratio and would be increased with the increase of the hydrogen fraction of the mixture. Meanwhile, the Markstein length would be increased with the increase of the equivalence ratio and the dilution ratio. Slight flaws occurred at the early stage. At a specific equivalence ratio, a higher initial pressure and hydrogen fraction would cause incomplete combustion.  相似文献   

9.
We study the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system. Direct numerical simulations are performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive flow code. A simplified reaction-diffusion model represents a stoichiometric H2-air mixture. The system being modeled represents turbulent combustion with the Damköhler number Da=0.05 and with the turbulent velocity at the energy injection scale 30 times larger than the laminar flame speed. The simulations show that flame interaction with high-speed turbulence forms a steadily propagating turbulent flame with a flame brush width approximately twice the energy injection scale and a speed four times the laminar flame speed. A method for reconstructing the internal flame structure is described and used to show that the turbulent flame consists of tightly folded flamelets. The reaction zone structure of these is virtually identical to that of the planar laminar flame, while the preheat zone is broadened by approximately a factor of two. Consequently, the system evolution represents turbulent combustion in the thin reaction zone regime. The turbulent cascade fails to penetrate the internal flame structure, and thus the action of small-scale turbulence is suppressed throughout most of the flame. Finally, our results suggest that for stoichiometric H2-air mixtures, any substantial flame broadening by the action of turbulence cannot be expected in all subsonic regimes.  相似文献   

10.
In this study, combustion characteristics of various biogas/air mixtures with hydrogen addition at elevated temperatures were experimentally investigated using bunsen burner method. Methane, CH4, was diluted with different concentrations of carbon dioxide, CO2, 30 to 40% by volume, to prepare the biogas for testing. It is followed by the hydrogen, H2, enrichment within the range of 0 to 40% by volume and the temperature elevation of unburned gas till 440 K. Blowoff velocities were measured by lowering the jet velocity until a premixed flame could be stabilized at the nozzle exit, while laminar burning velocities were calculated by analyzing the shape of the directly captured premixed bunsen flames. The results showed that hydrogen had a positive effect on the blowoff velocity for all three fuel samples. Nonlinear growth of the blowoff velocity with hydrogen addition was associated to the dominance of methane-inhibited hydrogen combustion process. It was also observed that the increase in the initial temperature of the unburned mixture led to a linear increase of the blowoff velocity. Moreover, specific changes in flame structure such as flame height, standoff distance, and the existence of tip opening were attributed to the change in the blowoff velocity. The effect of CO2 content in the mixture was examined with regards to laminar burning velocity for all compositions. The outcome of the experiment showed that the biogas mixture with higher content of CO2 possessed lower values of laminar burning velocity over the wide range of equivalence ratios. A reduced GRI-Mech 3.0 was used to simulate the combustion of biogas/air mixtures with different compositions using ANSYS Fluent. The numerically simulated stable conical flames were compared with the experimental flames, in terms of flame structure, showing that the reduced GRI-Mech 3.0 was suitable for modeling the combustion of biogas/air mixtures.  相似文献   

11.
The laminar burning velocities and Markstein lengths for the dissociated methanol–air–diluent mixtures were measured at different equivalence ratios, initial temperatures and pressures, diluents (N2 and CO2) and dilution ratios by using the spherically outward expanding flame. The influences of these parameters on the laminar burning velocity and Markstein length were analyzed. The results show that the laminar burning velocity of dissociated methanol–air mixture increases with an increase in initial temperature and decreases with an increase in initial pressure. The peak laminar burning velocity occurs at equivalence ratio of 1.8. The Markstein length decreases with an increase in initial temperature and initial pressure. Cellular flame structures are presented at early flame propagation stage with the decrease of equivalence ratio or dilution ratio. The transition positions can be observed in the curve of flame propagation speed to stretch rate, indicating the occurrence of cellular structure at flame fronts. Mixture diluents (N2 and CO2) will decrease the laminar burning velocities of mixtures and increase the sensitivity of flame front to flame stretch rate. Markstein length increases with an increase in dilution ratio except for very lean mixture (equivalence ratio less than 0.8). CO2 dilution has a greater impact on laminar flame speed and flame front stability compared to N2. It is also demonstrated that the normalized unstretched laminar burning velocity is only related to dilution ratio and is not influenced by equivalence ratio.  相似文献   

12.
The sensitivity to changes in fuel characteristics has been investigated for combustion of Blast Furnace Gas resulting from small volumetric increases in H2 concentration. A nonlinear methodology has been employed to quantify unstretched flame speeds and the effect of flame stretch from outwardly propagating spherical flames. Following benchmarking work with CH4, results were obtained under ambient conditions of 303 K and 0.1 MPa, with small absolute change in hydrogen concentration shown to at least triple the laminar burning velocity for all tested mixtures. Fuel composition and equivalence ratio were shown to independently influence mixture diffusivity and Lewis number, quantified by change in the obtained values of Markstein length. Temperature and pressure were increased to respective values of 393 K and 0.2 MPa to investigate influence of ambient conditions, with a power law correlation presented. Finally the performance of several published chemical reaction mechanisms has been evaluated through comparison of 1-D flame models.  相似文献   

13.
In this paper, the laminar combustion velocity of low calorific value gases blended with hydrogen was experimentally studied in the constant volume combustion bomb. An experimental system of constant volume combustion bomb was set up, and the variation trend of laminar flame velocity of low calorific value blended hydrogen was analyzed under different initial conditions. The experimental results show that increasing the initial pressure will reduce the laminar combustion velocity of the flame, while increasing the initial temperature will increase the laminar combustion velocity of the flame. With the increase of hydrogen ratio, the laminar combustion velocity of flame and instability of flame increases. The influence of equivalence ratio on laminar combustion velocity of flame is quite complex, generally, the burning speed of the rich mixture is greater than that of the lean mixture. This research can provide experimental basis for the design and development of low calorific value gas blended with hydrogen engine.  相似文献   

14.
Ammonia (NH3) is a carbon-free fuel that shows great research prospects due to its ideal production and storage systems. The experimental data of the laminar burning velocity of NH3/H2/air flame at different hydrogen ratios (XH2 = 0.1–0.5), equivalent ratios (φ = 0.8–1.3), initial pressures (P = 0.1–0.7 MPa), and initial temperatures (T = 298–493 K) were measured. The laminar burning velocity of the NH3/H2/air flame increased upon increasing the hydrogen ratios and temperature, but it decreased upon increasing the pressure. The equivalent ratio of the maximum laminar burning velocity was only affected by the proportion of reactants. The equivalence ratio value of the maximum laminar burning velocity was between 1.1 and 1.2 when XH2 = 0.3. The chemical reaction kinetics of NH3/H2/air flame under four different initial conditions was analyzed. The less NO maximum mole fraction was produced during rich combustion (φ > 1). The results provide a new reference for ammonia as an alternative fuel for internal combustion engines.  相似文献   

15.
The laminar burning velocities of biogas-hydrogen-air mixture at different fuel compositions and equivalence ratios were determined and studied using the spherical flame method. The combined effects of H2 and CO2 on the laminar burning velocity were investigated quantitatively based on the kinetic effects and the thermal effects. The results show that the laminar burning velocities of the BG40, BG50 and BG60 are increased almost linearly with the H2 addition owing to the improved fuel kinetics and the increased adiabatic flame temperature. The dropping trend of laminar burning velocity from the BG60-hydrogen to the BG40-hydrogen is primarily attributed to the decreased adiabatic flame temperature (thermal effects). The GRI 3.0 mechanism can predict the laminar burning velocity of biogas-hydrogen mixture better than the San Diego mechanism in this study. Whereas, the GRI mechanism still needs to be modified properly for the hydrogen-enriched biogas as the CO2 proportion exceeds 50% in the biogas at the fuel-rich condition. The increased CO2 exerts the stronger suppression on the net reaction rate of H + O2=OH + O than that of H + CH3(+M) = CH4(+M), which contributes to that the rich-shift of peak laminar burning velocity of biogas-hydrogen mixture requires higher H2 addition as the CO2 content is enhanced. For the biogas-hydrogen fuel, the H2 addition decreases the flame stability of biogas fuel effectively due to the increased diffusive-thermal instability and hydrodynamic instability. The improved flame stability of biogas-hydrogen fuel with the increased CO2 content is resulted from the combined effects of diffusive-thermal instability and hydrodynamic instability.  相似文献   

16.
Lewis number represents the thermo-diffusive effects on laminar flames. That of hydrogen–air mixture varies extensively with the equivalence ratio due to the high molecular diffusivity of hydrogen. In this study, the influences of pressure and thermo-diffusive effects on spherically propagating premixed hydrogen–air turbulent flames were studied using a constant volume fan-stirred combustion vessel. It was noted that the ratio of the turbulent to unstretched laminar burning velocity increased with decreasing equivalence ratio and increasing mixture pressure. Turbulent burning velocity was dominated by three factors: (1) purely hydrodynamic factor, turbulence Reynolds number, (2) relative turbulence intensity to reaction speed, the ratio of turbulence intensity to unstretched laminar burning velocity, and (3) sensitivity of the flame to the stretch due to the thermo-diffusive effects, Lewis and Markstein numbers. A turbulent burning velocity correlation in terms of Reynolds and Lewis numbers is presented.  相似文献   

17.
Auto-ignition and flame propagation are the two different controlling mechanisms for stabilizing the flame in secondary stage combustion in hot vitiated air environment and at elevated pressure. The present work aims at the investigation of the flame stabilization mechanism of flames developing in such an environment. In order to better understand the structure of turbulent flames at inlet temperature well above the auto-ignition temperature, the behavior of laminar flames at those conditions needs to be analyzed. As an alternative to challenging and expensive measurements at high temperature and pressure, the behavior of laminar flames at such conditions can be predicted from theory using mathematical simulation. In the present work, the laminar burning velocities and flame structures of premixed stoichiometric methane/air mixtures for inlet temperatures from 300 to 1450 K and absolute pressures from 1 to 8 bar have been calculated using a freely propagating laminar, one dimensional, planar flame model. The prediction shows that at inlet temperatures below the auto-ignition temperature, the predicted laminar burning velocity which corresponds to the unburned mixture velocity in order to create a steady laminar flame decreases with increase in pressure. When the inlet temperature of the mixture goes well beyond the auto-ignition temperature of the mixture, however, the unburned mixture velocity increases steeply at higher pressure level, because of a complete transition of the flame structure.  相似文献   

18.
In the present study, the flame acceleration and blast wave of H2-air and H2–O2–N2–Ar mixtures in nearly unconfined conditions were investigated conducting laboratory-scale and large-scale experiments. In particular, the effect of the volumetric expansion ratio on the flame acceleration examined, because Darrieus-Landau instability is essentially caused by a volumetric expansion of burned gas at flame front. Results demonstrated that the critical Péclet number Pec for the onset of flame acceleration decreased with the decrease in the equivalence ratio and the increase in the expansion ratio diluted with Ar. The dimensionless burning velocity increased as the flame radius became larger. The acceleration exponent for H2-air and H2–O2–N2–Ar mixtures was evaluated. The saturation of the exponent corresponding to the fractal dimension for only very lean H2-air flame is observed, notwithstanding the value for other mixtures still existed in the transition regime. The blast wave intensity of H2-air and H2–O2–N2–Ar explosion discussed by the acoustic theory. From the analysis, it is clear the blast wave intensity depends on the expansion ratio, laminar burning velocity and flame acceleration.  相似文献   

19.
利用定容燃烧弹和高速纹影摄像手段研究了不同初始压力、初始温度、气体稀释度和燃空当量比下乙醇-空气-稀释气预混层流燃烧特性的基础特征参数,如绝热火焰温度、层流燃烧速度、层流燃烧质量流量、层流燃烧火焰厚度和已燃气体Markstein长度。研究结果表明:在给定初始压力、初始温度和气体稀释度的情况下,绝热火焰温度、质量燃烧流量和层流燃烧速度的最大值均出现在当量比1.0~1.1,层流火焰厚度在当量比1.1处取得最小值;已燃气体Markstein长度随当量比的增加呈下降趋势;在给定当量比条件下,绝热火焰温度随初始压力、初始温度的增加而增加,随氮气稀释度的增加而降低;层流燃烧速度随初始压力和氮气稀释度增加而降低,随初始温度增加而增加;层流质量燃烧流量随初始压力和初始温度的增加而增加;随氮气稀释度增加而减小;层流火焰厚度和已燃气体Markstein长度随初始压力和初始温度的增加而减小,随氮气稀释度的增加而增加。  相似文献   

20.
Hydrogen (H2) is an effective additive to improve the issue of low laminar burning velocity of some biofuels. In order to better understand the laminar burning characteristics of ethyl acetate (EA) with or without H2 addition, experimental investigations of laminar burning characteristics were carried out by using the high-speed Schlieren photography technique in a constant volume combustion chamber. Tests were conducted under various equivalence ratios ranging from 0.5 to 1.4 with an initial temperature of 358 K, an initial pressure of 0.1 MPa and a H2/air proportion of 0%, 4%, 8% and 12% by volume. Laminar burning velocities, together with other parameters such as laminar burning flux, flame thickness, Markstein length and Markstein number, were calculated and discussed. In addition, the experimental data were compared with numerical simulations based on the Dayma model. Results showed that the laminar burning velocity of EA was enhanced with the increase of H2 addition, and the maximum value reached 95.09 cm/s at φ = 0.6 with 12% H2, a value more than twice as fast as that of pure EA (39.3 cm/s). Moreover, H2 was found to extend the lower flammability limit of EA. The laminar burning velocities simulated with the Dayma model agreed well with the experimental results of EA at various H2 additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号