首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years, tremendous efforts have been devoted to develop new photocatalyst with wide spectrum response for H2 generation from water or aqueous solution. In this work, CdS nanoparticles (NPs) have been immobilized on hydrogenated three-dimensional (3D) branched TiO2 nanorod arrays, resulting in a highly efficient photocatalyst, i.e, CdS/H-3D-TiO2. In addition, electrochemical reduction of H+ ion is identified as a limiting step in the photocatalytic generation of H2 at this catalyst, while here a Pt wired photocatalysis system (CdS/H-3D-TiO2/Pt-wire) is designed to overcome this barrier. Without the application of potential bias, visible light photocatalytic hydrogen production rate of CdS/H-3D-TiO2/Pt-wire is 18.42 μmol cm?2 h?1, which is 11.2 times that of CdS/H-3D-TiO2 without Pt (1.64 μmol cm?2 h?1). The Pt wire acts as an electron super highway between the FTO substrate and H+ ions to evacuate the generated electrons to H+ ions and catalyze the reduction reaction and consequently generate H2 gas. This work successfully offers a novel direction for dramatic improvement in H2 generation efficiency in photocatalysis field.  相似文献   

2.
This study demonstrates a high-performance visible-light-driven photocatalyst for water splitting H2 production. CdS nanorods (30 nm in diameters) with shorter radial transfer paths and fewer defects were prepared by a solvothermal method. To mitigate the recombination of electrons and holes, MoS2 nanosheets with rich active sites were modified on the surface of CdS nanorods by a room-temperature sonication treatment. The photocatalytic water splitting tests show that the MoS2/CdS nanocomposites exhibit excellent H2 evolution rates. The highest H2 evolution rates (63.71 and 71.24 mmol g?1h?1 in visible light and simulated solar light irradiation) was found at the 6% MoS2/CdS nanocomposites, which was 14.61 times and 13.39 times higher than those of the corresponding pristine CdS nanorods in visible light and simulate solar light irradiation, respectively. The apparent quantum efficiency (AQE) of the 6% MoS2/CdS nanocomposites at 420 nm was calculated to be 33.62%. The electrochemistry tests reveal that the enhanced photocatalytic activity is a result of extra photogenerated charge carries, greatly enhanced charge separation and transfer ability of the MoS2/CdS composites. This study may give new insights for the rational design and facile synthesis of high-performance and cost-effective bimetallic sulfide photocatalysts for solar-hydrogen energy conversion.  相似文献   

3.
With the massive consumption of fossil fuels, energy crisis and effectively reducing CO2 to curb global warming have become urgent and severe problems in the world. Photocatalytic conversion of CO2 technology which can convert CO2 into combustible compounds by using solar energy can solve both of the problems mentioned above. However, the photocatalytic conversion of CO2 exhibits too low efficiency, especially under visible light. So, in order to improve the photocatalytic efficiency, the composite photocatalysts of TiO2 nanotube array (TNTA) sensitized by CdS/ZnS quantum dots (QDs) were successfully prepared by anodization method and successive ionic layer adsorption and reaction (SILAR) method in this work. And the composite photocatalysts exhibited a high performance for photocatalytic conversion of gas-phase CO2 to methanol under visible light. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), and X-ray photoelectric spectroscopy (XPS) were employed to characterize the ingredients and morphologies of the synthesized photocatalysts. And, UV–vis diffuse reflectance spectra (UV–Vis DRS) revealed that CdS/ZnS QDs enhanced the photo-absorption of composite photocatalyst in the visible light region. The main product methanol yield of CdS/ZnS-TNTA under visible light was 2.73 times that of bare TNTA when TNTA was treated by 10 SILAR cycles. Meanwhile, the product yield first increased before decreasing with the increase of the CO2 flow rate. And the greatest product yield reached up to 255.49 nmol/(cm2-cat·h) with the increase of light intensity. The reaction mechanism was discussed in this paper. This high performance for photocatalytic reduction of CO2 was primarily attributed to the CdS/ZnS QDs sensitization, which widens the response wavelength range of the catalyst to include visible light and partly inhibits the recombination of electron-hole pairs.  相似文献   

4.
Overcoming the low charge transfer efficiency and poor photothermal stability of halide perovskite quantum dots (QDs) is the booster to achieve photocatalytic applications. In this paper, the Pt2+-doped CsPbBr3 QDs/two-dimensional accordion-like Ni-MOF (CPPB QDs/Ni-MOF) composite was firstly synthesized by fixing the CPPB QDs into the pores of Ni-MOF. Electron separation and transfer efficiency were analyzed by PL spectra and electrochemical data. The photocatalyst exhibited outstanding photocatalytic performance in hydrogen (H2) evolution. The optimal H2 evolution efficiency of the composite reached 153.6 μmol h?1, which was about 9 times than that of pure Ni-MOF and remained 134.8 μmol h?1 after the cycle test. The splendid efficiency could be benefited from the advantages of 2D layered structure of Ni-MOF and the high charge separation and transmission efficiency of CPPB QDs. Finally, the mechanism of electron migration and additional electron transfer channels between composite interfaces was further demonstrated by density functional theory (DFT) calculations. The present work opens up a novel perspective for photocatalytic applications of doped halide perovskite QDs/Ni-MOF nanocomposites.  相似文献   

5.
Monodispersed polystyrene (PS, ca. 300 nm) latex particles are incorporated into a TiO2 film. A polystyrene-modified TiO2 film (M-TiO2) with micro-cluster structure, containing micro/nano-composite pores is thus obtained after sintering. Cadmium sulfide (CdS) quantum dots (CdS-QDs) are accumulated over M-TiO2 and bare TiO2 films (B-TiO2) by successive ionic layer adsorption and reaction (SILAR); we designate these films as M-TiO2/CdS and B-TiO2/CdS, respectively. Influence of SILAR cycles used for depositing CdS on B-TiO2 and M-TiO2 films on the performance of the pertinent quantum dot-sensitized solar cells (QDSSCs) is studied. The QDSSC with 6 SILAR cycles of M-TiO2/CdS (M-TiO2/CdS6) exhibited a solar-to-electricity conversion efficiency (η) of 1.79%, while the cell with B-TiO2/CdS5 shows an η of 1.35%, under the illumination of one sun. Moreover, guanidine thiocyanate (GuSCN) is found to be a promising additive to the polysulfide electrolyte. The additive renders higher conversion efficiency (2.01%) to its QDSSC. Durability of the CdS-QDSSC is also tested. Scanning electron microscopy (SEM) is used to obtain the images of TiO2 films and energy-dispersive X-ray spectroscopy (EDX) is employed to study the stoichiometric ratios of M-TiO2/CdS and B-TiO2/CdS. Incident photon-to-current conversion efficiencies (IPCE) of the QDSSCs are obtained to confirm the JSC behaviors of the cells.  相似文献   

6.
Colloidal quantum dots (QDs) have attracted a lot of attention due to their unique optoelectronic properties. They have been widely used as building block materials for solar technologies such as solar cell, and photoelectrochemical (PEC) water splitting. Hydrogen generation by using QDs as photocatalysts has emerged a promising application in PEC devices. However, it is still very challenging to obtain high-efficiency PEC devices due to the limited absorption wavelength of QDs and the existence of surface traps which prohibit the efficient charge transfer. In this work, we synthesized ternary CdSexTe1-x/CdS (CdSeTe/CdS) “giant” QDs to extend the light absorption to near infrared, matched well with Sun's spectrum. The as-synthesized CdSeTe/CdS “giant” QDs exhibit quasi-type II band alignment as confirmed by its long lifetime and red-shifted emission peak compared with bare CdSeTe QDs. The wide absorption range of “giant” core/shell QDs and their long lifetime can improve the efficient absorption of Sun's spectrum and charge transfer. As a proof-of-concept, a PEC device using QDs sensitized TiO2 mesoporous thin film as a photoanode was used for hydrogen production. The corresponding photocurrent density was increased to 3.0 mA/cm2 with the introduction of CdS shell, which is 1.5 times higher than the PEC device using CdSeTe QDs. This study indicates that ternary or polynary alloyed core/shell QDs can be used as promising optoelectronic materials for applications of PEC devices.  相似文献   

7.
Development of co-catalyst free, core/shell structured photocatalyst with ultra-thin shell is of great importance towards the stable and continuous hydrogen (H2) production, where the shell prevents photo-corrosion of the core for longer stability with continuous H2 generation. Accordingly, herein, we report a one-step, surfactant free hydrothermal process for synthesis of high-efficient CdS/ZnS core/shell structured catalyst for H2 evolution under natural solar light. The structural and morphological characterizations using XRD and TEM techniques revealed the formation of phase pure CdS/ZnS system, with core and shell thickness of 395 and 15 nm, respectively. XPS studies revealed that the constituted elements in system exist in their native oxidation states, which indicated the stable structural integrity of the individual phase in the core/shell structure. The synergistic optical properties of CdS/ZnS showed the absorption edge around 500 nm and the decreased PL intensity indicated the improved charge recombination resistance in the system. The parametric studies such as synthesis time, core diameters and shell thickness optimization were conducted to study the formation kinetics of the core/shell structure and their photocatalytic efficiencies. Accordingly, the optimized core/shell catalyst showed around 763 and 2.4 folds superior activity when compared to the pristine CdS and ZnS, respectively. Further, the catalyst showed excellent stability for over 100 h with quantum efficiency of 8.78% under the irradiation of 20 W LED light at 420 nm. Based on the obtained results, the observed improved photocatalytic quantum efficiency could be ascribed to their synergistic effects of CdS and ZnS towards increased charge separation and spatial distributions of the carriers due to their core/shell configuration of the materials.  相似文献   

8.
The photocatalytic production of H2 by low-cost semiconductors is a promising approach to store solar energy. Photocatalysts with heterojunctions convert visible light into H2 faster because of more efficient charge separation. The morphology, the structure, and the crystallinity are additional factors to consider when developing a photocatalyst. Here, highly-crystalline CdS nanorod (NR) were synthesized by a facile one-pot process. Under visible light, pure CdS NR produced H2 2.1 times faster than conventional CdS nanoparticles (NP). CdS NR were then combined with the semiconductor red phosphorus (RPh). A CdS NR-based heterojunction photocatalyst with RPh5% had an excellent photocatalytic H2 evolution rate of 11.72 mmol g−1 h−1, which was 3.6 times higher than pure CdS NR. The apparent quantum efficiency of RPh5%/CdS NR was 19.57%. Furthermore, RPh5%/CdS NR exhibited a superior photogenerated charge separation efficiency and was stable with little photocorrosion compared to CdS NP showing the high potential of this heterojunction photocatalyst.  相似文献   

9.
Exploiting active, stable, and cost-efficient cocatalysts is crucial to enhance the photocatalytic performance of semiconductor-based photocatalysts for H2 evolution from water splitting. Herein, we report on using vanadium diboride (VB2) as an efficient cocatalyst to enhance the photocatalytic H2 evolution performance of CdS nanoparticles under visible light irradiation (λ ≥ 420 nm). The CdS/VB2 composites prepared by a facile solution-mixing method exhibit much improved H2 evolution activities in 10 vol% lactic acid (LA) solution relative to pristine CdS. The most efficient CdS/VB2 composite with 20 wt% VB2 (CB20) exhibits a H2 evolution rate as high as 12.1 mmol h−1 g−1, which is about 11 times higher than that of CdS alone (1.1 mmol h−1 g−1). Moreover, the highest apparent quantum efficiency (AQE) of 4.4% is recorded on CB20 at 420 nm. The improved photocatalytic activity of CdS/VB2 composite can be attributed to the excellent cocatalytic effect of VB2, which can not only enhance the charge separation on CdS but also accelerate the H2 evolution kinetics. This work demonstrates the great potential of using transition metal brodies (TMBs) as efficient cocatalysts for developing noble-metal-free and stable photocatalysts for solar photocatalytic H2 evolution.  相似文献   

10.
This paper reports the results of the photocatalytic activity of hydrogen production from water reduction using a composite catalyst of SiC/CdS with two types of heterointerfaces. Type 1 consists of hexagonal SiC and hexagonal CdS, while type 2 consists of hexagonal SiC and cubic CdS. It was found that type 1 composite exhibited an H2 evolution rate four times greater than type 2, despite the similar bandgaps and electropotentials of both cubic and hexagonal CdS. Meanwhile, increased BET surface area, good distribution of CdS, strong light absorption and low carrier recombination were observed in type 1 heterointerface. Lattice match is thought to be achieved between two hexagonal compounds with a lattice-constant-relationship of 3aH-CdS = 4aH-SiC. Further, the hexagonal SiC surface (006) was shown to have an affinity with the hexagonal CdS (002) facet due to their respective polar properties. The results of this paper demonstrate that lattice match plays an important role in forming efficient heterojunctions, which in turn enhance the photocatalytic performance of composite catalysts and will prove to be helpful in designing new composite photocatalytic systems.  相似文献   

11.
Well dispersed CdS quantum dots were successfully grown in-situ on g-C3N4 nanosheets through a solvothermal method involving dimethyl sulfoxide. The resultant CdS–C3N4 nanocomposites exhibit remarkably higher efficiency for photocatalytic hydrogen evolution under visible light irradiation as compared to pure g-C3N4. The optimal composite with 12 wt% CdS showed a hydrogen evolution rate of 4.494 mmol h−1 g−1, which is more than 115 times higher than that of pure g-C3N4. The enhanced photocatalytic activity induced by the in-situ grown CdS quantum dots is attributed to the interfacial transfer of photogenerated electrons and holes between g-C3N4 and CdS, which leads to effective charge separation on both parts.  相似文献   

12.
A series of 0.75 wt% Pt/CdS photocatalysts were successfully synthesized via a modified photoreduction process, with the assistance of a protective agent (polyvinylpyrrolidone, PVP) and/or structural inducer (NaI, NaBr, and NaCl). The physicochemical properties of the obtained 0.75 wt% Pt/CdS photocatalysts were characterized in more detailed. Their photocatalytic efficiencies were evaluated by visible-light photocatalytic hydrogen production. The results show that the photocatalytic activities of 0.75 wt% Pt/CdS photocatalysts for H2 production mainly depend on the type of structural inducer. Furthermore, a suitable ratio of PVP/NaI is necessary to optimize the photocatalytic performance of Pt/CdS composites. Notably, 0.75 wt% Pt/CdS (PVP/NaI = 4:1) gains the highest hydrogen production activity with a rate of 1155.8 μmol h?1, which is 1.8 times higher than that of 0.75 wt% Pt/CdS obtained from the traditional photoreduction method (640.9 μmol h?1) and 17.3 times higher than that of the bare CdS sample (66.9 μmol h?1). The as-prepared 0.75 wt% Pt/CdS photocatalyst (PVP/NaI = 4:1) also exhibits a good stability. An optimum ratio of PVP/NaI not only causes a decrease in particle size of Pt nanoparticles but also leads to an increase in BET specific surface area of Pt/CdS and an enhanced electron transfer capability of Pt nanoparticles, which should be responsible for the enhanced photocatalytic performance.  相似文献   

13.
Excellent light harvest, efficient charge separation and sufficiently exposed surface active sites are crucial for a given photocatalyst to obtain excellent photocatalytic performances. The construction of two-dimensional/two-dimensional (2D/2D) or zero-dimensional/2D (0D/2D) binary heterojunctions is one of the effective ways to address these crucial issues. Herein, a ternary CdSe/WS2/g-C3N4 composite photocatalyst through decorating WS2/g-C3N4 2D/2D nanosheets (NSs) with CdSe quantum dots (QDs) was developed to further increase the light harvest and accelerate the separation and migration of photogenerated electron-hole pairs and thus enhance the solar to hydrogen conversion efficiency. As expected, a remarkably enhanced photocatalytic hydrogen evolution rate of 1.29 mmol g−1 h−1 was obtained for such a specially designed CdSe/WS2/g-C3N4 composite photocatalyst, which was about 3.0, 1.7 and 1.3 times greater than those of the pristine g-C3N4 NSs (0.43 mmol g−1 h−1), WS2/g-C3N4 2D/2D NSs (0.74 mmol g−1 h−1) and CdSe/g-C3N4 0D/2D composites (0.96 mmol g−1 h−1), respectively. The superior photocatalytic performance of the prepared ternary CdSe/WS2/g-C3N4 composite could be mainly attributed to the effective charge separation and migration as well as the suppressed photogenerated charge recombination induced by the constructed type-II/type-II heterojunction at the interfaces between g-C3N4 NSs, CdSe QDs and WS2 NSs. Thus, the developed 0D/2D/2D ternary type-II/type-II heterojunction in this work opens up a new insight in designing novel heterogeneous photocatalysts for highly efficient photocatalytic hydrogen evolution.  相似文献   

14.
The photocatalytic water splitting strategy is one of the most promising ways to achieve clean and renewable solar-to-hydrogen energy conversion. In this study, a highly enhanced photocatalytic H2 production system has been achieved, using CdS nanoparticles (NPs) decorated on prickly Ni3S2 nanowires (NWs) as the light-driven photocatalyst. The photocatalyst was prepared by a co-precipitated method in which spiky Ni NWs were employed as starting material for prickly Ni3S2 NWs. Characterization analysis (XRD, TEM, XPS, etc.) show the high purity of Ni3S2/CdS hybrid structures and the well deposition of CdS NPs on prickly Ni3S2 NWs. Besides, the as synthesized Ni3S2/CdS photocatalyst exhibit reduced photoluminescence peak intensity, which means the Ni3S2 NWs functions as electron collector and transporter to quench the photoluminescence of CdS. This prickly Ni3S2/CdS nanocomposite demonstrates a 70 times higher H2 production rate than that of pure CdS and a quantum efficiency of 12.3% at the wavelength of 400 nm in the absence of noble metals. This enhanced H2 production activity is better than the one of CdS loaded with 0.5 wt% Pt. Our findings highlight the potential application of Ni3S2/CdS hybrid structures for visible light photocatalytic hydrogen yielding in the energy conversion field.  相似文献   

15.
The CdS/CaTiO3 cubic core-shell composite is synthesized via a hydrothermal-chemical method. The CdS/CaTiO3 cubic core-shell composite (CdS/CTO-2) exhibits remarkable photocatalytic HER activity (∼1025.27 μmol·g−1 h−1) and photodegradation enhancement than that of single CaTiO3 (∼21 folds of HER, ∼19 folds of photodegradation) and single CdS (∼15 folds of HER, ∼15 folds of photodegradation), and a decent stability. There, CdS/CaTiO3 composite with appropriate potential gradient and CdS with better visible light response can improve carrier efficiency, including increasing carrier transportation, prolonging lifetime and decreasing recombination. Additionally, cubic core-shell microstructure can increase active sites, while maintaining photocatalytic stability.  相似文献   

16.
Hydrogen production by solar energy is an efficient and clean approach to fulfill the future energy demand. Herein, a novel multi-shelled porous heterostructure CoOx/CdS/TiO2 photoanode was fabricated by the hydrothermal and chemical method. There were more active sites, suitable surface defects and heterojunction structures in the homogeneous-porous-multi-shelled CoOx/CdS/TiO2 photoanode. It showed a photocurrent density of 2.89 mA/cm2 at 1.23V vs. RHE, which is 2.22 fold of the original TiO2 photoanode. The heterostructure fabrication of the CdS/TiO2 could broaden the visible light absorption and enhance the charge separation efficiency. The multi-shelled homogeneous porous structure of the CoOx/CdS/TiO2 further enhanced the charge separation efficiency and accelerated the interfacial oxygen evolution kinetics. The mechanism for the enhanced photoelectrochemical water splitting of favorable CoOx/CdS/TiO2 photoanode is proposed.  相似文献   

17.
In this paper, CdS QDs@ZrO2–TiO2 hollow spherical composites with double Z-scheme heterostructure modified by CdS QDs were prepared by the sol–gel method and vacuum impregnation method using polystyrene (PS) microspheres synthesized by the self-assembly technique as templates. A series of characterization results show that CdS QDs@ZrO2–TiO2 composites treated by PS microspheres have the structure of hollow spheres with uniform size and orderly arrangement. Moreover, the double Z-scheme heterojunction formed between CdS QDs, ZrO2, and TiO2 in the composite can optimize the charge transfer path and improve the charge separation efficiency. Results of the photodegradation and the photo-splitting water of CdS QDs@ZrO2–TiO2 composites show that, compared with other systems, CdS QDs@ZrO2–TiO2 composites have the highest photocatalytic degradation rate of crystal violet, and meanwhile, the photocatalytic hydrogen production rate of the composite under simulated sunlight is more than 100 times that of TiO2. The good absorption of visible light, the successful construction of double Z-scheme heterojunction, and the unique hollow sphere structure of CdS QDs@ZrO2–TiO2 composites are the key factors for enhanced photocatalytic performance.  相似文献   

18.
Constructing active sites on photocatalysts is one of the most effective approaches for promoting photocatalytic H2 production activity. In this paper, a p-type semiconductor α-NiS is in-situ grown on an n-type semiconductor CdS by a simple solid state method, which results in a strong interfacial contact between α-NiS and CdS. Benefitting from the built-in electric field caused by a p-n junction, the photoinduced electrons of CdS and holes of α-NiS migrate to their interface and recombine rapidly, which results in the formation of a Z system. The more negative CB potential of α-NiS/CdS possesses stronger ability to reduce H+ to H2, thereby exhibiting higher photocatalytic H2 evolution activity. Furthermore, the strong interface contact is beneficial to the charge migration and promotes the charge separation efficiency. The H2 evolution rate of 1.0% α-NiS/CdS reaches 9.8 mmol h?1 g?1, corresponding to an AQY of 65.7% at λ = 420 nm.  相似文献   

19.
Design of non-noble-metal artificial photosynthesis system that can split water with high apparent quantum yield (AQY) and robust stability remains a fundamental challenge. Here we report that a physical mixture of Fe2P nanopaticles (NPs) and CdS nanosheets (NSs) can gives AQY of photocatalytic hydrogen production as high as 90% at 420 nm monochromatic light with ethanol as electron donor at strong alkaline conditions. The highest rate for hydrogen production reached about 220 mmol g?1 h?1. In this hybrid photocatalyst system, free standing Fe2P NPs act as efficient and robust noble-metal-free co-catalysts and ultrathin CdS NSs are used as the photosensitizer. PL and TRPL results demonstrate that photoexcited electron can transfer from the conduction band of the excited CdS to Fe2P, which aided charge separation and enhanced the hydrogen evolution activity. Femtosecond transient absorption result reveals that the time-averaged interfacial electron transfer (ET) rate constant (<kET>) from CdS NSs to Fe2P is about 7.4 × 109 s?1 under the guarantee of the scavenging of photoexcited hole immediately, which is one order faster than the electron relaxation rate in pure CdS NSs.  相似文献   

20.
A special nano-structured composite ZnO/CdS thin film with hierarchical nanopores and nano-cracks has been synthesized by a facile two-step method for the first time, in which both loadings of ZnO and CdS are optimized. We first fabricated the hierarchical nanoporous ZnO thin film through rapid gas/liquid interface assembly and layer-by-layer transfers of bowl-like ZnO nanoparticles for thirteen times. The ZnO nanobowls are prepared by a simple solution chemical reaction without using any templates. After annealing, the assembled ZnO film is sensitized with CdS nanoparticles by successive ionic layer adsorption and reactions for six cycles. Nano-cracks form for the ZnO/CdS nano-composite film by calcination, which is due to the different thermal expansion behavior between the ZnO film and the CdS layer. The facilely optimized ZnO/CdS films can serve as a promising photoanode in a photoelectrochemical cell, and it can generate a saturated photocurrent density as high as 7.8 mA cm?2 at ?0.9 V (vs. Hg|Hg2SO4|saturated K2SO4) under visible light illumination of 100 mW cm?2 in an aqueous solution of 0.5 M Na2S, corresponding to a solar-to-electricity conversion efficiency of 6.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号