首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic effects of K2NbF7 on the hydrogen storage properties of MgH2 have been studied for the first time. MgH2 + 5 wt% K2NbF7 has reduced the onset dehydrogenation temperature to 255 °C, which is 75 °C lower than the as-milled MgH2. For the rehydrogenation kinetic, at 150 °C, MgH2 + 5 wt% K2NbF7 absorbs 4.7 wt% of hydrogen in 30 min whereas the as-milled MgH2 only absorbs 0.7 wt% of hydrogen under similar condition. For the dehydrogenation kinetic, at 320 °C, the MgH2 + 5 wt% K2NbF7 is able to release 5.2 wt% of hydrogen in 5.6 min as compared to 0.3 wt% by the as-milled MgH2 under similar condition. Comparatively, the Ea value of MgH2 + 5 wt% K2NbF7 is 96.3 kJ/mol, which is 39 kJ/mol lower compared to the as-milled MgH2. The MgF2, the KH and the Nb that are found after the heating process are believed to be the active species that have improved the system properties. It is concluded that the K2NbF7 is a good catalyst to improve the hydrogen storage properties of MgH2.  相似文献   

2.
The effects of MnFe2O4 nanopowder synthesised via a simple ‘hydrothermal’ method on the hydrogen storage properties of MgH2 are investigated for the first time. The particle size of the as-synthesised MnFe2O4 nanoparticles is determined to be about 10 nm. We observe that MnFe2O4 catalyst decreases the decomposition temperature of MgH2 and enhances the sorption kinetics. Interestingly, the onset hydrogen desorption temperature of 10 wt% MnFe2O4-doped MgH2 sample gets lowered from 350 °C to 240 °C with faster kinetics, and the sample shows an average dehydrogenation rate 8–9 times faster than that of the as-milled MgH2 sample. By adding 10 wt% of as-prepared MnFe2O4 to MgH2, approximately 5.5 wt% hydrogen can be absorbed in 10 min at 200 °C. In contrast, the un-doped MgH2 sample absorbed only 4.0 wt% hydrogen in the same period of time. From the Kissinger analysis, the apparent activation energy for hydrogen released in the MnFe2O4-added MgH2 composite is found to be 108.42 kJ/mol, which is much lower than the activation energy for hydrogen released in the as-milled MgH2 (146.57 kJ/mol). It is believed that the in situ formed Fe particle and Mn-containing phases together play a synergistic role in remarkably improving MgH2 storage properties.  相似文献   

3.
The influence of CuFe2O4 addition on the sorption performances of MgH2 prepared by ball milling was studied for the first time. The MgH2 + 10 wt% CuFe2O4 sample exhibited an enhancement in hydrogen storage performance compared to that of as-milled MgH2, with the onset decomposition temperature decreased from 340 °C to 250 °C. Dehydrogenation kinetic result revealed that CuFe2O4-added MgH2 released around 5.3 wt% H2 within 10 min at 320 °C, while the as-milled MgH2 released below 1.0 wt% H2 under the same condition. Furthermore, about 5.0 wt% H2 was absorbed at 250 °C in 30 min for the 10 wt% CuFe2O4-doped MgH2 sample. In contrast, the un-doped MgH2 only absorbed 4.0 wt% H2 at 250 °C in 30 min. From the Kissinger analysis, the apparent activation energy of as-milled MgH2 was 166.0 kJ/mol and this value decreased to 113.0 kJ/mol for 10 wt% CuFe2O4-added MgH2. The enhanced sorption performance of MgH2 in the presence of CuFe2O4 is believed to be due to the role of in situ formed Fe, Mg-Cu alloy, and MgO phases as an active species to catalyse the hydrogen storage properties of MgH2.  相似文献   

4.
In this study, the hydrogen storage properties of MgH2 with the addition of K2TiF6 were investigated for the first time. The temperature-programmed desorption results showed that the addition of 10 wt% K2TiF6 to the MgH2 exhibited a lower onset desorption temperature of 245 °C, which was a decrease of about 105 °C and 205 °C compared with the as-milled and as-received MgH2, respectively. The dehydrogenation and rehydrogenation kinetics of 10 wt% K2TiF6-doped MgH2 were also significantly improved compared to the un-doped MgH2. The results of the Arrhenius plot showed that the activation energy for the hydrogen desorption of MgH2 was reduced from 164 kJ/mol to 132 kJ/mol after the addition of 10 wt% K2TiF6. Meanwhile, the X-ray diffraction analysis showed the formation of a new phase of potassium hydride and titanium hydride together with magnesium fluoride and titanium in the doped MgH2 after the dehydrogenation and rehydrogenation process. It is reasonable to conclude that the K2TiF6 additive doped with MgH2 played a catalytic role through the formation of active species of KH, TiH2, MgF2 and Ti during the ball milling or heating process. It is therefore proposed that this newly developed product works as a real catalyst for improving the hydrogen sorption properties of MgH2.  相似文献   

5.
Study on the synergistic catalytic effect of the SrTiO3 and Ni on the improvement of the hydrogen storage properties of the MgH2 system has been carried out. The composites have been prepared using ball milling method and comparisons on the hydrogen storage properties of the MgH2 – Ni and MgH2 – SrTiO3 composites have been presented. The MgH2 – 10 wt% SrTiO3 – 5 wt% Ni composite is found to has a decomposition temperature of 260 °C with a total decomposition capacity of 6 wt% of hydrogen. The composite is able to absorb 6.1 wt% of hydrogen in 1.3 min (320 °C, 27 atm of hydrogen). At 150 °C, the composite is able to absorb 2.9 wt% of hydrogen in 10 min under the pressure of 27 atm of hydrogen. The composite has successfully released 6.1 wt% of hydrogen in 13.1 min with a total dehydrogenation of 6.6 wt% of hydrogen (320 °C). The apparent activation energy, Ea, for decomposition of SrTiO3-doped MgH2 reduced from 109.0 kJ/mol to 98.6 kJ/mol after the addition of 5 wt% Ni. The formation of Mg2Ni and Mg2NiH4 as the active species help to boost the performance of the hydrogen storage properties of the MgH2 system. Observation of the scanning electron microscopy images suggested the catalytic role of the SrTiO3 additive is based on the modification of composite microstructure.  相似文献   

6.
Herein, we demonstrate the successful preparation of a novel complex transition metal oxide (TiVO3.5) by oxidizing a solid-solution MXene (Ti0.5V0.5)3C2 at 300 °C and its high activity as a catalyst precursor in the hydrogen storage reaction of MgH2. The prepared TiVO3.5 inherits the layered morphology of its MXene precursor, but the layer surface becomes very coarse because of the presence of numerous nanoparticles. Adding a minor amount of TiVO3.5 remarkably reduces the dehydrogenation and hydrogenation temperatures of MgH2 and enhances the reaction kinetics. The 10 wt% TiVO3.5-containing sample exhibits optimal hydrogen storage properties, as it desorbs approximately 5.0 wt% H2 in 10 min at 250 °C and re-absorbs 3.9 wt% H2 in 5 s at 100 °C and under 50 bar of hydrogen pressure. The apparent activation energy is calculated to be approximately 62.4 kJ/mol for the MgH2-10 wt% TiVO3.5 sample, representing a 59% reduction in comparison with pristine MgH2 (153.8 kJ/mol), which reasonably explains the remarkably reduced dehydrogenation operating temperature. Metallic Ti and V are detected after ball milling with MgH2; they are uniformly dispersed on the MgH2 matrix and act as actual catalytic species for the improvement of the hydrogen storage properties of MgH2.  相似文献   

7.
MgH2 is one of the most promising hydrogen storage materials due to its high capacity and low cost. In an effort to develop MgH2 with a low dehydriding temperature and fast sorption kinetics, doping MgH2 with NiCl2 and CoCl2 has been investigated in this paper. Both the dehydrogenation temperature and the absorption/desorption kinetics have been improved by adding either NiCl2 or CoCl2, and a significant enhancement was obtained in the case of the NiCl2 doped sample. For example, a hydrogen absorption capacity of 5.17 wt% was reached at 300 °C in 60 s for the MgH2/NiCl2 sample. In contrast, the ball-milled MgH2 just absorbed 3.51 wt% hydrogen at 300 °C in 400 s. An activation energy of 102.6 kJ/mol for the MgH2/NiCl2 sample has been obtained from the desorption data, 18.7 kJ/mol and 55.9 kJ/mol smaller than those of the MgH2/CoCl2, which also exhibits an enhanced kinetics, and of the pure MgH2 sample, respectively. In addition, the enhanced kinetics was observed to persist even after 9 cycles in the case of the NiCl2 doped MgH2 sample. Further kinetic investigation indicated that the hydrogen desorption from the milled MgH2 is controlled by a slow, random nucleation and growth process, which is transformed into two-dimensional growth after NiCl2 or CoCl2 doping, suggesting that the additives reduced the barrier and lowered the driving forces for nucleation.  相似文献   

8.
The influences of Nb-containing oxides and ternary compound in hydrogen sorption performance were investigated. As faster desorption kinetic and lower activation energy were reported by addition of a ternary compound catalyst such as K2NiF6, the influence of KNbO3 on hydrogen storage properties of MgH2 has been investigated for the first time. The MgH2 - KNbO3 composite desorbed 3.9 wt% of hydrogen within 10 min, while MgH2 and MgH2-Nb₂O₅ composites desorbed 0.66 wt% and 3.2 wt% respectively under similar condition. For MgH2 with other Nb-contained catalysts such as Nb, NbO and Nb₂O3, the desorption rate was almost the same as the one registered for as-milled MgH2. The analysis of differential scanning calorimetry (DSC) showed that MgH2-KNbO3 composite started to release hydrogen at ∼335 °C which is 50 °C lower compared to as-milled MgH2 without any additives. The activation energy for the hydrogen desorption was estimated to be about 104 ± 6.8 kJ mol−1 for this material, while for the as-milled MgH2 was about 165 ± 2.0 kJ mol−1. It is believed that Nb-ternary oxide catalyst (KNbO3) showed a good catalytic effect and enhance the sorption kinetics of MgH2.  相似文献   

9.
The present investigation describes the hydrogen storage properties of MgH2 ball milled with different additives i.e. graphene templated rare earth metal (La and Ce) fluorides, CeF4 and LaF3. MgH2 ball milled with graphene templated CeF4 (MgH2:CeF4@Gr) has onset desorption temperature of 245 °C, which is 50 °C, 52 °C and 75 °C lower than MgH2 ball milled with LaF3 templated graphene, CeF4 and LaF3 respectively. CeF4@Gr also shows the superior effect amongst all additives during rehydrogenation where MgH2:CeF4@Gr absorbs 5.50 wt% within 2.50 min at 300 °C under 15 atm H2 pressure. Dual tuning effect, i.e. lowering of thermodynamic (62.77 kJ/mol H2: lower from 74 kJ/mol for pristine MgH2) and kinetics barrier (93.01 kJ/mol) has been observed for MgH2:CeF4@Gr. Additionally, MgH2 ball milled with CeF4@Gr shows good reversibility up to 24 cycles of de/rehydrogenation. The feasible working mechanism of CeF4@Gr as additive for MgH2 has been studied in detail with the help of Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction characterizations (XRD).  相似文献   

10.
Transition metal-based oxides have been proven to have a substantial catalytic influence on boosting the hydrogen sorption performance of MgH2. Herein, the catalytic action of Ni6MnO8@rGO nanocomposite in accelerating the hydrogen sorption properties of MgH2 was investigated. The MgH2 + 5 wt% Ni6MnO8@rGO composites began delivering H2 at 218 °C, with about 2.7 wt%, 5.4 wt%, and 6.6 wt% H2 released within 10 min at 265 °C, 275 °C, and 300 °C, respectively. For isothermal hydrogenation at 75 °C and 100 °C, the dehydrogenated MgH2 + 5 wt% Ni6MnO8@rGO sample could absorb 1.0 wt% and 3.3 wt% H2 in 30 min, respectively. Moreover, as compared to addition-free MgH2, the de/rehydrogenation activation energies for doped MgH2 composites were lowered to 115 ± 11 kJ/mol and 38 ± 7 kJ/mol, and remarkable cyclic stability was reported after 20 cycles. Microstructure analysis revealed that the in-situ formed Mg2Ni/Mg2NiH4, Mn, MnO2, and reduced graphene oxide synergically enhanced the hydrogen de/absorption properties of the Mg/MgH2 system.  相似文献   

11.
In the present work, nanocrystalline Mg2Ni with an average size of 20–50 nm was prepared via ball milling of a 2MgH2Ni powder followed by compression under a pressure of 280 MPa. The phase component, microstructure, and hydrogen sorption properties were characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), pressure-composition-temperature (PCT) and synchronous thermal analyses (DSC/TG). Compared to the non-compressed 2MgH2Ni powder, the compressed 2MgH2Ni pellet shows lower dehydrogenation temperature (290 °C) and a single-phase Mg2Ni is obtained after hydrogen desorption. PCT measurements show that the nanocrystalline Mg2Ni obtained from dehydrogenated 2MgH2Ni pellet has a single step hydrogen absorption and desorption with fairly low absorption (?57.47 kJ/mol H2) and desorption (61.26 kJ/mol H2) enthalpies. It has very fast hydrogen absorption kinetics at 375 °C with about 3.44 wt% hydrogen absorbed in less than 5 min. The results gathered in this study show that ball milling followed by compression is an efficient method to produce Mg-based ternary hydrides.  相似文献   

12.
Currently, magnesium hydride (MgH2) as a solid-state hydrogen storage material has become the subject of major research owing to its good reversibility, large hydrogen storage capacity (7.6 wt%) and affordability. However, MgH2 has a high decomposition temperature (>400 °C) and slow desorption and absorption kinetics. In this work, BaMnO3 was synthesized using the solid-state method and was used as an additive to overcome the drawbacks of MgH2. Interestingly, after adding 10 wt% of BaMnO3, the initial desorption temperature of MgH2 decreased to 282 °C, which was 138 °C lower than that of pure MgH2 and 61 °C lower than that of milled MgH2. For absorption kinetics, at 250 °C in 2 min, 10 wt% of BaMnO3-doped MgH2 absorbed 5.22 wt% of H2 compared to milled MgH2 (3.48 wt%). Conversely, the desorption kinetics also demonstrated that 10 wt% of BaMnO3-doped MgH2 samples desorbed 5.36 wt% of H2 at 300 °C within 1 h whereas milled MgH2 only released less than 0.32 wt% of H2. The activation energy was lowered by 45 kJ/mol compared to that of MgH2 after the addition of 10 wt% of BaMnO3. Further analyzed by using XRD revealed that the formation of Mg0·9Mn0·1O, Mn3O4 and Ba or Ba-containing enhanced the performance of MgH2.  相似文献   

13.
This paper presents a comparative study of H2 absorption and desorption in MgH2 milled with NbF5 or NbH0.9. The addition of NbF5 or NbH0.9 greatly improves hydriding and dehydriding kinetics. After 80 h of milling the mixture of MgH2 with 7 mol.% of NbF5 absorbs 60% of its hydrogen capacity at 250 °C in 30 s, whereas the mixture with 7 mol.% of NbH0.9 takes up 48%, and MgH2 milled without additive only absorbs 2%. At the same temperature, hydrogen desorption in the mixture with NbF5 finishes in 10 min, whereas the mixture with NbH0.9 only desorbs 50% of its hydrogen content, and MgH2 without additive practically does not releases hydrogen. The kinetic improvement is attributed to NbH0.9, a phase observed in the hydrogen cycled MgH2 + NbF5 and MgH2 + NbH0.9 materials, either hydrided or dehydrided. The better kinetic performance of the NbF5-added material is attributed to the combination of smaller size and enhanced distribution of NbH0.9 with more favorable microstructural characteristics. The addition of NbF5 also produces the formation of Mg(HxF1-x)2 solid solutions that limit the practically achievable hydrogen storage capacity of the material. These undesired effects are discussed.  相似文献   

14.
The effect of mesoporous Co3O4, NiCo2O4 and NiO on the hydrogen sorption performance of MgH2 was investigated. These oxides were synthesized by multi-step nanocasting and introduced during the high-energy ball milling of MgH2 powder to act as catalysts. Hydrogen desorption on the as-milled powders was assessed upon heating the samples from room temperature to 400 °C. In all cases, the onset temperature for desorption was lowered by taking advantage of the introduced additives. The NiO-doped sample displayed the best response, the desorption rate being 7 times faster than in pure MgH2. Complementary kinetic studies on this particular sample revealed that the sorption activation energies were much lower (50 kJ/mol for absorption and 335 kJ/mol for desorption) than the corresponding ones for undoped MgH2 (57 kJ/mol for absorption and 345 kJ/mol for desorption), thus proving the catalytic activity of the mesoporous NiO oxide. Significantly, the X-ray powder diffraction (XRPD) patterns taken on the NiO-doped sample after discharging/charging cycles revealed that Mg could fully hydrogenate at the end of the charging process, while Mg metal was still detected in the undoped (pure) sample. Favored conditions for dissociative chemisorption of hydrogen could be ascribed to the formation of metallic Ni arising from complete or partial reduction of NiO, as observed in the XRPD patterns.  相似文献   

15.
In order to improve the hydrogen storage performance of MgH2, graphene and CeF3 co-catalyzed MgH2 (hereafter denoted as MgH2+CeF3@Gn) were prepared by wet method ball milling and hydriding, which is a simple and time-saving method. The effect of CeF3@Gn on the hydrogen storage behavior of MgH2 was investigated. The experimental results showed that co-addition of CeF3@Gn greatly decreased the hydrogen desorption/absorption temperature of MgH2, and remarkably improved the dehydriding/hydriding kinetics of MgH2. The onset hydrogen desorption temperature of Mg + CeF3@Gn is 232 °C,which is 86 °C lower than that of as-milled undoped MgH2, and its hydrogen desorption capacity reaches 6.77 wt%, which is 99% of its theoretical capacity (6.84 wt%). At 300 °C and 200 °C the maximum hydrogen desorption rates are 79.5 and 118 times faster than that of the as-milled undoped MgH2. Even at low temperature of 150 °C, the dedydrided sample (Mg + CeF3@Gn) also showed excellent hydrogen absorption kinetics, it can absorb 5.71 wt% hydrogen within 50 s, and its maximum hydrogen absorption rate reached 15.0 wt% H2/min, which is 1765 times faster than that of the undoped Mg. Moreover, no eminent degradation of hydrogen storage capacity occurred after 15 hydrogen desorption/absorption cycles. Mg + CeF3@Gn showed excellent hydrogen de/absorption kinetics because of the MgF2 and CeH2-3 that are formed in situ, and the synergic catalytic effect of these by-products and unique structure of Gn.  相似文献   

16.
Catalytic effects of TiH2 on hydrogenation/dehydrogenation kinetics of MgH2 were investigated in this study. The TG analysis showed that the addition of the x wt% TiH2 exhibited lower onset temperature of 160°C which is 100°C and 190°C lower than as‐milled and as‐received MgH2. The dehydrogenation and hydrogenation kinetics were significantly improved compared with the pure MgH2. The activation energy for the hydrogen desorption of MgH2 was reduced from ?137.13 to ?77.58 kJ/mol by the addition of TiH2. XRD and XPS results showed that the phase of TiH2 remained same during the dehydrogenation without any intermediate formation confirming its role as catalyst.  相似文献   

17.
Investigations on the catalytic effects of a non-reactive and stable additive, SrTiO3, on the hydrogen storage properties of the 4MgH2Na3AlH6 destabilized system were carried out for the first time. The Na3AlH6 compound and the destabilized systems used in the investigations are prepared using ball milling method. The doped system, 4MgH2Na3AlH6SrTiO3, had an initial dehydrogenation temperature of 145 °C, which 25 °C lower as compared to the un-doped system. The isothermal absorption and desorption capacity at 320 °C has increased by 1.2 wt% and 1.6 wt% with the addition of SrTiO3 as compared to the 4MgH2Na3AlH6 destabilized system. The decomposition activation energy of the doped system is estimated to be 117.1 kJ/mol. As for the XRD analyses at different decomposition stages, SrTiO3 is found to be stable and inert. In addition to SrTiO3, similar phases are found in the doped and the un-doped system during the decomposition and dehydrogenation processes. Therefore, the catalytic effect of the SrTiO3 is speculated owing to its ability to modify the physical structure of the 4MgH2Na3AlH6 particles through pulverization effect.  相似文献   

18.
The present investigation deals with the synthesis of ternary transition metal alloy nanoparticles of FeCoNi and graphene templated FeCoNi (FeCoNi@GS) by one-pot reflux method and there use as a catalyst for hydrogen sorption in MgH2. It has been found that the MgH2 catalyzed by FeCoNi@GS (MgH2: FeCoNi@GS) has the onset desorption temperature of ~255 °C which is 25 °C and 100 °C lower than MgH2 catalyzed by FeCoNi (MgH2: FeCoNi) (onset desorption temperature 280 °C) and the ball-milled (B.M) MgH2 (onset desorption temperature 355 °C) respectively. Also MgH2: FeCoNi@GS shows enhanced kinetics by absorbing 6.01 wt% within just 1.65 min at 290 °C under 15 atm of hydrogen pressure. This is much-improved sorption as compared to MgH2: FeCoNi and B.M MgH2 for which hydrogen absorption is 4.41 wt% and 1.45 wt% respectively, under the similar condition of temperature, pressure and time. More importantly, the formation enthalpy of MgH2: FeCoNi@GS is 58.86 kJ/mol which is 19.26 kJ/mol lower than B.M: MgH2 (78.12 kJ/mol). Excellent cyclic stability has also been found for MgH2: FeCoNi@GS even up to 24 cycles where it shows only negligible change from 6.26 wt% to 6.24 wt%. A feasible catalytic mechanism of FeCoNi@GS on MgH2 has been put forward based on X-ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Photoelectron Spectroscopy (XPS), and microstructural (electron microscopic) studies.  相似文献   

19.
Magnesium hydride is extensively examined as a hydrogen store due to its high hydrogen content and low cost. However, high thermodynamic stability and sluggish kinetics hinder its practical application. To overcome this last drawback, different Ti amounts (y = 0, 0.025, 0.05, 0.1, 0.2 and 0.3) were added to magnesium to form (1-y)MgH2+yTiH2 nanocomposites (NC) by reactive ball milling under hydrogen gas. Thermodynamic stability of the MgH2 phase in NCs was determined using a manometric Sieverts rig. Reversible hydrogen capacity and reaction kinetics were determined at 573 K over 20 sorption cycles under a limited reaction time of 15 min. On increasing Ti amount, reaction kinetics are enhanced both in absorption and desorption leading to a higher reversibility for hydrogen storage with the MgH2 phase. However, titanium increases the molar weight of NCs and forms irreversible titanium hydride. The highest reversible capacity (4.9 wt% H) was obtained for the lowest here studied TiH2 content (y = 0.025).  相似文献   

20.
Carbon aerogel (CA) microspheres with highly crumpled graphene–like sheets surface and network internal structure have been successfully prepared by an inverse emulsion polymerization routine, subsequently ball milled with Mg powder to fabricate Mg@CA. The Mg change into MgH2 phases, decorating on the surface of the CA forming MgH2@CA microspheres composite after the hydrogenation process at 400 °C. The MgH2@CA microspheres composite displays MgH2–CA shell–core structure and shows enhanced hydrogenation and dehydrogenation rates. It can quickly uptake 6.2 wt% H2 within 5 min at 275 °C and release 4.9 wt% H2 within 100 min at 350 °C, and the apparent activation energy for the dehydrogenation is decreased to 114.8 kJ mol?1. The enhanced sorption kinetics of the composite is attributed to the effects of the in situ formed MgH2 NPs during the hydrogenation process and the presence of CA. The nanosized MgH2 could reduce the hydrogen diffusion distance, and the CA provides the sites for nucleation and prevents the grains from agglomerating. This novel method of in situ producing MgH2 NPs on zero–dimensional architecture can offer a new horizon for obtaining high performance materials in the hydrogen energy storage field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号