首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在对氧化亚硅(SiO)材料进行表面碳包覆和添加导电材料的基础上,掺杂少量纳米Si进一步提高其首次充放电容量和首次库仑效率。采用XRD、SEM、TEM、Raman、FTIR分析材料的物相结构和微观形貌,通过恒流充放电测试仪分析复合材料的电化学性能。结果显示,纳米Si质量为SiOx质量10%的复合材料(SiOx-Si@C@碳纳米管(CNTs)-10)的首次充放电容量分别为1 348.1 mA?h/g和1 874.4 mA?h/g,首次库仑效率为71.9%,循环100周后材料的可逆容量为1 116.2 mA?h/g,容量保持率为82.8%;以不同电流密度充放电,其放电容量远远高于没有纳米Si掺杂的材料。SiOx-Si@C@CNTs复合材料具有较高的首次库伦效率、较好的循环性能和倍率性能。   相似文献   

2.
采用氢氧化物共沉淀-高温固相焙烧法合成了富锂正极材料Li1+x[Ni0.36Mn0.64]1-xO2(x=0.12,0.15,0.18,0.2)。采用XRD表征其结构,SEM表征其形貌,恒电流充放电和循环伏安测试其电化学性能。其中,XRD结果表明各样品都具有α-NaFeO2型层状结构。结果表明:室温下以30mA/g的电流密度,在4.6~2.75V的电压范围内充放电,x=0.15的首次放电比容量为237.9mAh/g,经50次循环后容量保持率为98%。研究发现,层状富锂镍锰正极材料中的Li2MnO3组分在充放电过程中会逐渐向尖晶石相转变,这是容量衰减的主要原因。  相似文献   

3.
A Fullerene C60 film was introduced as a coating layer for silicon nanowires (Si NWs) by a plasma assisted thermal evaporation technique. The morphology and structural characteristics of the materials were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). SEM observations showed that the shape of the nanowire structure was maintained after the C60 coating and the XPS analysis confirmed the presence of the carbon coating layer. The electrochemical characteristics of C60 coated Si NWs as anode materials were examined by charge-discharge tests and electrochemical impedance measurements. With the C60 film coating, Si NW electrodes exhibited a higher initial coulombic efficiency of 77% and a higher specific capacity of 2020 mA h g(-1) after the 30th cycle at a current density of 100 microA cm(-2) with cut-off voltage between 0-1.5 V. These improved electrochemical characteristics are attributed to the presence of the C60 coating layer which suppresses side reaction with the electrolyte and maintains the structural integrity of the Si NW electrodes during cycle tests.  相似文献   

4.
Garnet-type Ta-doped Li7La3Zr2O12 (LLZTO) electrolyte suffers from unstable chemical passivation under air exposure, responsible for the poor interfacial wettability and conductivity with Li metal. Instead of conventional methods to remove surface contaminants by mechanical polishing, acid etching and high temperature reduction, herein we propose a simple strategy of interfacial gas release and detergency to smartly convert Li2CO3 passivation layer into ion-conductive Li3PO4 domains at mild temperature (∼200 ℃). The in-situ formation of PH3 vapor and its phosphorization enables a dramatic decrease of Li/garnet interfacial resistance down to 2 Ω cm2 at room temperature (RT). The improved interfacial wettability and conductivity endow the symmetric cells with ultra-stable galvanostatic cycling over 1500 h and high critical current density of 2.6 mA/cm2. The high coulombic efficiency of Li plating enables a high reversibility of solid-state NCM811/Li cells even under a low N/P ratio (∼4) and high cut-off voltage of 4.5 V at RT. The prototype of fluoride-garnet solid-state batteries are successfully driven as rechargeable system (rather than widely known primary battery) with high conversion capacity (400 ∼ 500 mAh/g) and high-rate performance (251.2 mAh/g at 3 C). This interface infiltration-detergency approach provides a practical solution to the achievement of high-energy solid-state Li metal batteries.  相似文献   

5.
用直流电弧等离子体法制备金属钼纳米粉体再使其与赤磷发生固相反应,用两步法制备出磷化钼纳米粒子。使用X射线衍射(XRD)和透射电镜(TEM)等手段表征磷化钼纳米粒子的结构并进行了电化学性能测试。结果表明,MoP纳米粒子呈球状,粒径为20~50 nm;在电流密度为100 mA/g的条件下MoP纳米粒子负极材料的首次放电比容量达到746 mAh/g,50次循环后放电比容量为241.9 mAh/g;电流密度为2000 mA/g时放电比容量为99.90 mAh/g,电流密度恢复到100 mA/g其放电比容量仍然保持247.60 mAh/g。用作锂离子电池的负极材料,MoP纳米粒子具有优异的稳定性和可逆性。  相似文献   

6.
电化学法聚吡咯膜作锂二次电池正极的电池性能   总被引:3,自引:0,他引:3  
以电化学法制备的聚吡咯膜作正极,组装锂/聚吡咯(PPy)二次电池。运用CHI650B电化学工作站和LAND电池测试系统对电池性能进行测试和表征。结果表明,当充放电电流为0.05 mA,正极片成型压力为10 MPa时,电池的放电比容量和库仑效率随循环次数增加而缓慢增大,经过60个循环后放电比容量达到36 mAh/g,库仑效率为100%。电池的循环伏安曲线存在明显的氧化还原峰,且峰电流很大,说明PPy正极材料的氧化还原可逆性很好。采用电化学阻抗谱分析了电池的内部作用机理,为进一步提高电池综合性能提供理论依据。  相似文献   

7.
Raising the coulombic efficiency of lithium metal anode cycling is the deciding step in realizing long-life rechargeable lithium batteries. Here, we designed a highly concentrated salt/ether electrolyte diluted in a fluorinated ether: 1.8 M LiFSI in DEE/BTFE (diethyl ether/bis(2,2,2-trifluoroethyl)ether), which realized an average coulombic efficiency of 99.37% at 0.5 mA cm−2 and 1 mAh cm−2 for more than 900 cycles. This electrolyte also maintained a record coulombic efficiency of 98.7% at 10 mA cm−2, indicative of its ability to provide fast-charging with high cathode loadings. Morphological studies reveal dense, dendrite free Li depositions after prolonged cycling, while surface analyses confirmed the formation of a robust LiF-rich SEI layer on the cycled Li surface. Moreover, we discovered that this ether-based electrolyte is highly compatible with the low-cost, high-capacity SPAN (Sulfurized polyacrylonitrile) cathode, where the constructed Li||SPAN cell exhibited reversible cathode capacity of 579 mAh g−1 and no capacity decay after 1200 cycles. A cell where a high areal loading SPAN electrode (>3.5 mAh cm−2) is paired with only onefold excess Li was constructed and cycled at 1.75 mA cm−2, maintaining a coulombic efficiency of 99.30% for the lithium metal. Computational simulations revealed that at saturation, the Li-FSI complex forms contact ion pairs, with a first solvation shell comprising DEE molecules, and a second solvation shell with a mix of DEE/BTFE. This study provides a path to enable high energy density Li||SPAN batteries with stable cycling.  相似文献   

8.
以CH3COOLi·2H2O、V2O5、Mn(CH3COO)2·4H2O、(NH4)2HPO4和蔗糖为原料,采用溶胶–凝胶法合成了掺锰磷酸钒锂/碳(Li3V2-2x/3Mnx(PO4)3/C)复合正极材料,用XRD、XPS、SEM、电化学性能对样品进行了表征.测试结果表明,少量锰的掺杂并未改变Li3V2(PO4)3/C的单斜结构,Li3V1.94Mn0.09(PO4)3中的Mn和V分别以+2和+3价存在,其颗粒类似球形,直径比较均匀且小于200 nm,并表现出良好的电化学性能.在0.1C倍率和3.0~4.8 V电压内,该样品的首次充、放电容量分别为182.1和168.8 mAh/g,放电效率高达92.69%,而且100次循环后,其放电比容量仍是首次放电容量的77.4%.  相似文献   

9.
Li‐garnets are promising inorganic ceramic solid electrolytes for lithium metal batteries, showing good electrochemical stability with Li anode. However, their brittle and stiff nature restricts their intimate contact with both the electrodes, hence presenting high interfacial resistance to the ionic mobility. To address this issue, a strategy employing ionic liquid electrolyte (ILE) thin interlayers at the electrodes/electrolyte interfaces is adopted, which helps overcome the barrier for ion transport. The chemically stable ILE improves the electrodes‐solid electrolyte contact, significantly reducing the interfacial resistance at both the positive and negative electrodes interfaces. This results in the more homogeneous deposition of metallic lithium at the negative electrode, suppressing the dendrite growth across the solid electrolyte even at high current densities of 0.3 mA cm?2. Further, the improved interface Li/electrolyte interface results in decreasing the overpotential of symmetric Li/Li cells from 1.35 to 0.35 V. The ILE modified Li/LLZO/LFP cells stacked either in monopolar or bipolar configurations show excellent electrochemical performance. In particular, the bipolar cell operates at a high voltage (≈8 V) and delivers specific capacity as high as 145 mAh g?1 with a coulombic efficiency greater than 99%.  相似文献   

10.
Material design in terms of their morphologies other than solid nanoparticles can lead to more advanced properties. At the example of iron oxide, we explored the electrochemical properties of hollow nanoparticles with an application as a cathode and anode. Such nanoparticles contain very high concentration of cation vacancies that can be efficiently utilized for reversible Li ion intercalation without structural change. Cycling in high voltage range results in high capacity (~132 mAh/g at 2.5 V), 99.7% Coulombic efficiency, superior rate performance (133 mAh/g at 3000 mA/g) and excellent stability (no fading at fast rate during more than 500 cycles). Cation vacancies in hollow iron oxide nanoparticles are also found to be responsible for the enhanced capacity in the conversion reactions. We monitored in situ structural transformation of hollow iron oxide nanoparticles by synchrotron X-ray absorption and diffraction techniques that provided us clear understanding of the lithium intercalation processes during electrochemical cycling.  相似文献   

11.
High surface area nanosheet TiO2 with mesoporous structure were synthesized by hydrothermal method at 130 degrees C for 12 h. The samples characterized by XRD, SEM, TEM, SAED, and BET surface area. The nanosheet structure was slightly curved and approximately 50-100 nm in width and several nanometers in thickness. The as-synthesized nanosheet TiO2 had average pore diameter about 3-4 nm. The BET surface area and pore volume of the sample were about 642 m(2)/g and 0.774 cm(3)/g, respectively. The nanosheet structure after calcinations were changed into nanorods/nanoparticles composite with anatase TiO2 structure at 300-500 degrees C (10-15 nm in rods diameter and about 5-10 nm in particles diameter). The solar energy conversion efficiency (eta) of the cell using nanorods/nanoparticles TiO2 (from the nanosheet calcined at 450 degrees C for 2 h) with mesoporous structure was about 7.08% with Jsc of 16.35 mA/cm(2), Voc of 0.703 V and ff of 0.627; while eta of the cell using P-25 reached 5.82% with Jsc of 12.74 mA/cm(2), Voc of 0.704 V, and ff of 0.649.  相似文献   

12.
锂金属具有高理论比容量和低电化学电位,是发展高能量密度电池最有吸引力的负极材料之一。然而,锂金属负极在反复的沉积/剥离过程中,不可避免地会出现不规则的锂枝晶生长,这将严重影响锂金属电池的循环寿命和使用安全性。本研究发展了一种简单温和的策略,在碳纳米管上原位修饰铋纳米颗粒,并涂覆在商业铜箔表面用作锂金属负极的集流体。研究表明,原位修饰的铋纳米颗粒可显著促进锂均匀沉积,抑制锂枝晶生长,从而提高锂金属电池的电化学性能。在电流密度为1 mA·cm–2的条件下,基于Bi@CNT/Cu集流体的锂铜电池循环300圈后库仑效率可稳定在98%。基于Li@Bi@CNT/Cu负极的对称电池可稳定循环1000 h。基于Bi@CNT/Cu集流体的磷酸铁锂(LFP)全电池也获得了优异的电化学性能,在1C(170m A·g–1)倍率下可稳定循环700圈。本研究为抑制锂金属负极枝晶生长提供了新的思路。  相似文献   

13.
To improve performance at higher rates, we developed a hydrothermal method to prepare carbon-coated monoclinic lithium vanadium phosphate (Li(3)V(2)(PO(4))(3)) powder to be used as a cathode material for Li-ion batteries. The structural, morphological and electrochemical properties were characterized by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and galvanostatic charge-discharge cycling. A superior cycle and rate behavior are demonstrated for Li(3)V(1.85)Sc(0.15)(PO(4))(3)/C and Li(2.96)Ca(0.02)V(2)(PO(4))(3)/C electrodes at charge-discharge current rates above 5C.  相似文献   

14.
There has been a renewed interest in using lithium (Li) metal as an anode material for rechargeable batteries owing to its high theoretical capacity of 3860 mA h g?1. Despite extensive research, modifications to effectively inhibit Li dendrite growth still result in decreased Li loading and Li utilization. As a result, real capacities are often lower than values expected, if the total mass of the electrode is taken into consideration. Herein, a lightweight yet mechanically robust carbon nanotube (CNT) paper is demonstrated as a freestanding framework to accommodate Li metal with a Li mass fraction of 80.7 wt%. The highly conductive network made of sp2‐hybridized carbon effectively inhibits formation of Li dendrites and affords a favorable coulombic efficiency of >97.5%. Moreover, the Li/CNT electrode retains practical areal and gravimetric capacities of 10 mA h cm?2 and 2830 mA h g?1 (vs the mass of electrode), respectively, with 90.9% Li utilization for 1000 cycles at a current density of 10 mA cm?2. It is demonstrated that the robust and expandable nature is a distinguishing feature of the CNT paper as compared to other 3D scaffolds, and is a key factor that leads to the improved electrochemical performance of the Li/CNT anodes.  相似文献   

15.
C Han  Y Pi  Q An  L Mai  J Xie  X Xu  L Xu  Y Zhao  C Niu  AM Khan  X He 《Nano letters》2012,12(9):4668-4673
Rational assembly of unique complex nanostructures is one of the facile techniques to improve the electrochemical performance of electrode materials. Here, a substrate-assisted hydrothermal method was designed and applied in synthesizing moundlily like radial β-AgVO(3) nanowire clusters. Gravitation and F(-) ions have been demonstrated to play important roles in the growth of β-AgVO(3) nanowires (NWs) on substrates. The results of cyclic voltammetry (CV) measurement and X-ray diffraction (XRD) characterization proved the phase transformation from β-AgVO(3) to Ag(1.92)V(4)O(11) during the redox reaction. Further electrochemical investigation showed that the moundlily like β-AgVO(3) nanowire cathode has a high discharge capacity and excellent cycling performance, mainly due to the reduced self-aggregation. The capacity fading per cycle from 3rd to 51st is 0.17% under the current density of 500 mA/g, which is much better than 1.46% under that of 20 mA/g. This phenomenon may be related to the Li(+) diffusion and related kinetics of the electrode. This method is shown to be an effective and facile technique for improving the electrochemical performance for applications in rechargeable Li batteries or Li ion batteries.  相似文献   

16.
随着储能设备和电力驱动产品的激增,特别是电动汽车的大规模推广应用,全固态电池被认为是最有可能解决电动设备日益严峻的安全问题和高能量密度需求的策略之一.本文报道了一种Al4B2O9纳米棒改性的聚环氧乙烷(PEO)基固体聚合物电解质(ASPE),其具有高离子电导率、宽电化学窗口、良好的机械性能和阻燃性能.具体来说,因为Al...  相似文献   

17.
Liang Y  Han X  Cong C  Yi Z  Zhou L  Sun J  Zhang K  Zhou Y 《Nanotechnology》2007,18(13):135607
This paper reports a newly developed method for the shape and size control of transition metal composite oxides, such as LiVMoO(6), to obtain significantly enhanced electrode properties for lithium-ion batteries. Rod-like LiVMoO(6) nanocrystals were synthesized through a designed route of partial reduction, self-assembly and re-oxidation. V(5+) and Mo(6+) ions were used with low-grade starting materials to get a mixed valence of V and Mo. It is believed that ion pairs of V(5+)/V(4+) or Mo(6+)/Mo(5+) in the resultant mixture play an important role in the formation of a template precursor by self-assembly during a rheological phase reaction, although further explanation is required. The electrochemical performance of the LiVMoO(6) obtained has been much improved due to the increased crystallinity and reduced particle size of this material. 176?mA?h?g(-1) and 166?mA?h?g(-1) capacity was delivered in the initial discharge with a reversible capacity retention of 94.8% and 95.3% after 100?cycles in the range of 3.6-1.80?V versus metallic Li at 1 and 3?C current rate, respectively.  相似文献   

18.
采用溶胶凝胶法制备Li2M4O9,将其与氧化石墨烯在不同溶剂中进行溶剂热反应,以制备Li2M4O9墨烯复合材料,通过x射线衍射(XRD)、扫描电镜(SEM)进行表征,并对其进行一系列的电化学性能测试,包括充放电、循环伏安、循环效率、循环性能和交流阻抗测试。Li2M4O9-墨烯复合材料首次放电比容量由144.6mAh/gr提高至212.8mAh/g,50次充放电循环后,库仑效率保持在95%以上,电化学性得到提高。  相似文献   

19.
Li metal is the most ideal anode material to assemble rechargeable batteries with high energy density. However, nonuniform Li-ion flux during repeated Li plating and stripping leads to continuous Li dendrite growth and dead Li formation, which causes safety risks and short lifetime and thus impedes the commercialization of Li metal batteries. Here, parallelly aligned holey nanosheets on a Li metal anode are reported to simultaneously redistribute the Li-ion flux in the electrolyte and in the solid-electrolyte interphase, which allows uniform Li-ion distribution as well as fast Li-ion diffusion for reversible Li plating and stripping. With holey MgO nanosheets as an example, the protected Li anodes achieve Coulombic efficiency of ≈99% and ultralong-term reversible Li plating/stripping over 2500 h at a high current density of 10 mA cm−2. A full-cell battery, using the protected anode, a 4 V Li-ion cathode, and a commercial carbonate electrolyte, shows capacity retention of 90.9% after 500 cycles.  相似文献   

20.
Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP?GCC) are facilely synthesized by a top‐down route applying room‐temperature synthesized Co‐based zeolitic imidazolate framework (ZIF‐67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages‐encapsulated Co9S8, the as‐obtained HCSP?GCC exhibit superior Li‐ion storage. Working in the voltage of 1.0?3.0 V, they display a very high energy density (707 Wh kg?1), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g?1 at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g?1). When the work voltage is extended into 0.01–3.0 V, a higher stable capacity of 1600 mA h g?1 at a current density of 100 mA g?1 is still achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号