首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pyruvate decarboxylase (EC 4.1.1.1) is a thiamin diphosphate-dependent enzyme that catalyzes the penultimate step in alcohol fermentation. The enzyme is widely distributed in plants and fungi but is rare in prokaryotes and absent in animals. Here we review its structure and properties with particular emphasis on how site-directed mutagenesis of the enzyme from Zymomonas mobilis has assisted us to understand the function of critical residues.  相似文献   

2.
The crystal structures of pyruvate decarboxylase from the yeast Saccharomyces uvarum and Saccharomyces cerevisiae have been determined at 2.4 and 2.3 A resolution, respectively. These structures provide details about the protein fold and domain assembly within subunits, about subunit assembly to form dimers and about dimer assembly to form tetramers. They also provide a clear picture of the active site centered on the thiamin diphosphate cofactor, and have allowed amino acids critical for catalysis and involved in stabilization of the unusual cofactor conformation to be identified. The structural information has enabled identification of the site of allosteric activation to be centered on Cys-221, and suggests that a six residue segment leading from the regulatory site to the catalytic site may be involved in transmission of a binding signal. The importance of several amino acids within this segment in the regulatory process, as well as some involved in stabilizing and activating the cofactor has been confirmed by analyzing the behavior of recombinant enzymes with single point mutations introduced at these sites. Additional structures have been determined for pyruvate decarboxylase in multiple crystal forms, some of which were obtained from crystals grown with known allosteric activators present in the media. Currently four distinct types of tetramers have been observed, with each showing a different mode of association of dimers to form the tetramers. In some of the cases involving the presence of allosteric activators drastic changes in the mode of dimer assembly to form tetramers is seen.  相似文献   

3.
Oligonucleotide-directed site-specific mutagenesis was carried out on pyruvate decarboxylase (EC 4.1.1.1) from Saccharomyces cerevisiae at three of the four cysteines (152, 221, and 222), the fourth (69) being buried according to X-ray crystallographic results [Arjunan et al. (1996) J. Mol. Biol. 256, 590-600]. All of the variants still retained significant activity, and all could be purified to homogeneity. FT-IR experiments were run on the C221S, C222S, C221S/C222S and C152A variants, as well as on the wild-type enzyme. There is a band present at 2557 cm-1 in the spectra of all variants and the wild-type enzyme, except in the spectrum of the C152A variant. This frequency is appropriate to a cysteine S-H stretching mode. It was therefore concluded that C152 is the only undissociated cysteine on the enzyme at pH 6.0, the pH optimum of this enzyme, whereas C221, C222, and C69 are all ionized. Isoelectric focusing experiments were carried out on all of these variants, as well as on the H92A variant (H92 is across the domain divide on the alpha domain, from C221 located on the beta domain). The variation in isoelectric points deduced from the data was consistent with removal of negative charges concomitant with the C221S, C222S, and C221S/C222S substitutions and removal of a positive charge with the H92A substitution when compared to that of the wild-type enzyme. The results of these two types of experiments are in good accord and suggest that the site of substrate activation at C221 [Baburina et al. (1994) Biochemistry 33, 5630-5635] is comprised of a Cys221S- +HHis92 ion pair, not unlike that found in papain and glyceraldehyde-3-phosphate dehydrogenase. This finding suggests that the regulatory site of this enzyme has been optimized for nucleophilic reactivity between the thiolate of C221 and the keto carbon of the 2-oxoacid.  相似文献   

4.
A human tumor necrosis factor-alpha (TNF-alpha) mutant (M3S) with low systemic toxicity in vivo was designed, and its structures in two different crystal packings were determined crystallographically at 1.8 and 2.15-A resolution, respectively, to explain altered biological activities of the mutant. M3S contains four changes: a hydrophilic substitution of L29S, two hydrophobic substitutions of S52I and Y56F, and a deletion of the N-terminal seven amino acids that is disordered in the structure of wild-type TNF-alpha. Compared with wild-type TNF-alpha, it exhibits 11- and 71-fold lower binding affinities for the human TNF-R55 and TNF-R75 receptors, respectively, and in vitro cytotoxic effect and in vivo systemic toxicity of M3S are 20 and 10 times lower, respectively. However, in a transplanted solid tumor mouse model, M3S suppresses tumor growth more efficiently than wild-type TNF-alpha. M3S is highly resistant to proteolysis by trypsin, and it exhibits increased thermal stability and a prolonged half-life in vivo. The L29S mutation causes substantial restructuring of the loop containing residues 29-36 into a rigid segment as a consequence of induced formation of intra- and intersubunit interactions, explaining the altered receptor binding affinity and thermal stability. A mass spectrometric analysis identified major proteolytic cleavage sites located on this loop, and thus the increased resistance of M3S to the proteolysis is consistent with the increased rigidity of the loop. The S52I and Y56F mutations do not induce a noticeable conformational change. The side chain of Phe56 projects into a hydrophobic cavity, while Ile52 is exposed to the bulk solvent. Ile52 should be involved in hydrophobic interactions with the receptors, since a mutant containing the same mutations as in M3S except for the L29S mutation exhibits an increased receptor binding affinity. The low systemic toxicity of M3S appears to be the effect of the reduced and selective binding affinities for the TNF receptors, and the superior tumor-suppression of M3S appears to be the effect of its weak but longer antitumoral activity in vivo compared with wild-type TNF-alpha. It is also expected that the 1.8-A resolution structure will serve as an accurate model for explaining the structure-function relationship of wild-type TNF-alpha and many TNF-alpha mutants reported previously and for the design of new TNF-alpha mutants.  相似文献   

5.
We extend the random intercept logistic model to accommodate negative intracluster correlations for bivariate binary response data. This approach assumes a single random effect per cluster, but entails separate affine transformations of this random effect for the two responses of the pair. We show this approach works for two data sets and a simulation, whereas other mixed effects approaches fail. The two data sets are from a crossover trial and a developmental toxicity study of the effects of chemical exposure on malformation risk among rat pups. Comparisons are made with the conditional likelihood approach and with generalized estimating equations estimation of the population-averaged logit model. Simulations show the conditional likelihood approach does not perform well for moderate to strong negative correlations, as a positive intracluster correlation is assumed. The proposed mixed effects approach appears to be slightly more conservative than the population-averaged approach with respect to coverage of confidence intervals. Nonetheless, the statistical literature suggests that mixed effects models provide information in addition to that provided by population-averaged models under scientific contexts such as crossover trials. Extensions to trivariate and higher-dimensional responses also are addressed. However, such extensions require certain constraints on the correlation structure.  相似文献   

6.
Glutathione peroxidase belongs to the family of selenoproteins and plays an important role in the defense mechanisms of mammals, birds and fish against oxidative damage by catalyzing the reduction of a variety of hydroperoxides, using glutathione as the reducing substrate. However, the physiological role of human plasma glutathione peroxidase remains unclear due to the low levels of reduced glutathione in human plasma and the low reactivity of this enzyme. The crystal structure of human plasma glutathione peroxidase was determined by Patterson search methods using a polyalanine model modified from the known structure of bovine erythrocyte glutathione peroxidase. The structure was refined to a crystallographic R-factor of 0.228 (R(free) = 0.335) with I > 2sigma(I) reflections in the resolution range of 8 to 2.9 A. The asymmetric unit contains a dimer. Tetramers are built up from dimers by crystallographic symmetry. The subunit structure of the plasma enzyme shows the typical structure motif of the thioredoxin fold consisting of a central beta-sheet and several flanking alpha-helices. The active site selenocysteine residue is situated in the loop between beta1 and alpha1 and is located in a pocket on the protein surface. The overall structure of the human plasma enzyme is similar to that of the bovine erythrocyte enzyme. The main differences in their subunit structures are an extended N terminus and the possible existence of a disulfide bridge in the plasma enzyme. Compared to the bovine erythrocyte enzyme, a number of residues in the active site are mutated or deleted in the plasma enzyme, including all the residues that were previously suggested to be involved in glutathione binding. The observed structural differences between the two enzymes suggest differences in substrate binding and specificity.  相似文献   

7.
The crystal structure of the paired homeodomain bound to DNA as a cooperative dimer has been determined to 2.0 A resolution. Direct contacts between each homeodomain and the DNA are similar to those described previously. In addition, an extensive network of water molecules mediates contacts between the recognition helix and the DNA major groove. Several symmetrical contacts between the two homeodomains underlie the cooperative interaction, and deformations in the DNA structure are necessary for the establishment of these contacts. Comparison with structures of homeodomains bound monomerically to DNA suggests that the binding of a single paired homeodomain can introduce these DNA distortions, thus preparing a template for the cooperative interaction with a second homeodomain. This study shows how the paired (Pax) class homeodomains have achieved cooperativity in DNA binding without the assistance of other domains, thereby enabling the recognition of target sequences that are long enough to ensure specificity.  相似文献   

8.
Phosphomannose isomerase (PMI) catalyses the reversible isomerization of fructose-6-phosphate (F6P) and mannose-6-phosphate (M6P). Absence of PMI activity in yeasts causes cell lysis and thus the enzyme is a potential target for inhibition and may be a route to antifungal drugs. The 1.7 A crystal structure of PMI from Candida albicans shows that the enzyme has three distinct domains. The active site lies in the central domain, contains a single essential zinc atom, and forms a deep, open cavity of suitable dimensions to contain M6P or F6P The central domain is flanked by a helical domain on one side and a jelly-roll like domain on the other.  相似文献   

9.
The three-dimensional structure of the seryl-tRNA synthetase from Thermus thermophilus has been determined and refined at 2.5 A resolution. The final model consists of a dimer of 421 residues each and 190 water molecules. The R-factor is 18.4% for all the data between 10 and 2.5 A resolution. The structure is very similar to that of the homologous enzyme from Escherichia coli, with an r.m.s. difference of 1.5 A for the 357 alpha-carbon atoms considered equivalent. The comparison of the two structures indicates increased hydrophobicity, reduced conformational entropy and reduced torsional strain as possible mechanisms by which thermostability is obtained in the enzyme from the thermophile.  相似文献   

10.
The emission spectrum of TaO, excited in a tantalum hollow cathode lamp, has been observed at high resolution using a Fourier transform spectrometer. In addition to previously known transitions, a number of new bands have been identified and assigned as belonging to two new electronic transitions: H2Pi1/2-X2Delta3/2 and K2Phi5/2-X2Delta3/2. A rotational analysis ofthe 0-0 and 0-1 bands of the H2Pi1/2-X2Delta3/2 transition and of the 0-1, 1-2, 0-0, 1-0, and 2-1 bands of theK2Phi5/2-X2Delta3/2 transition has been carried out, providing the following equilibrium constants for the ground X2Delta3/2 state:omegae = 1028.9060(15) cm-1, omegaexe = 3.58928(66) cm-1, Be = 0.40289737(139) cm-1, alphae = 0.00185445(83) cm-1, andre = 1.6873430(29) ?. The principal molecular constants for the H2Pi1/2 state are T00 = 20 634.32758 (40) cm-1,B0 = 0.3766867(31) cm-1, and r0 = 1.7450604(72) ?, while the equilibrium constants for the K2Phi5/2 state areomegae = 905.4549(15) cm-1, omegaexe = 3.67601(64) cm-1, Be = 0.37965102(36) cm-1, alphae = 0.00189370(21) cm-1, andre = 1.7382343(8) ?. Although the H2Pi1/2 and K2Phi5/2 states have been observed previously in matrix isolation experiments, our work on these states is the first in the gas phase. Copyright 1998 Academic Press.  相似文献   

11.
Bacterial luciferase is a flavin monooxygenase that catalyzes the oxidation of a long-chain aldehyde and releases energy in the form of visible light. A new crystal form of luciferase cloned from Vibrio harveyi has been grown under low-salt concentrations, which diffract x-rays beyond 1.5-A resolution. The x-ray structure of bacterial luciferase has been refined to a conventional R-factor of 18.2% for all recorded synchrotron data between 30.0 and 1.50-A resolution. Bacterial luciferase is an alpha-beta heterodimer, and the individual subunits fold into a single domain (beta/alpha)8 barrel. The high resolution structure reveals a non-prolyl cis peptide bond that forms between Ala74 and Ala75 in the alpha subunit near the putative active site. This cis peptide bond may have functional significance for creating a cavity at the active site. Bacterial luciferase employs reduced flavin as a substrate rather than a cofactor. The structure presented was determined in the absence of substrates. A comparison of the structural similarities between luciferase and a nonfluorescent flavoprotein, which is expressed in the lux operon of one genus of bioluminescent bacteria, suggests that the two proteins originated from a common ancestor. However, the flavin binding sites of the nonfluorescent protein are likely not representative of the flavin binding site on luciferase. The structure presented here will furnish a detailed molecular model for all bacterial luciferases.  相似文献   

12.
A three-dimensional structure for the monomeric iron-containing hydrogenase (CpI) from Clostridium pasteurianum was determined to 1.8 angstrom resolution by x-ray crystallography using multiwavelength anomalous dispersion (MAD) phasing. CpI, an enzyme that catalyzes the two-electron reduction of two protons to yield dihydrogen, was found to contain 20 gram atoms of iron per mole of protein, arranged into five distinct [Fe-S] clusters. The probable active-site cluster, previously termed the H-cluster, was found to be an unexpected arrangement of six iron atoms existing as a [4Fe-4S] cubane subcluster covalently bridged by a cysteinate thiol to a [2Fe] subcluster. The iron atoms of the [2Fe] subcluster both exist with an octahedral coordination geometry and are bridged to each other by three non-protein atoms, assigned as two sulfide atoms and one carbonyl or cyanide molecule. This structure provides insights into the mechanism of biological hydrogen activation and has broader implications for [Fe-S] cluster structure and function in biological systems.  相似文献   

13.
The extremely thermostable superoxide dismutase from the hyperthermophilic archaeon Sulfolobus acidocaldarius was crystallized and the three-dimensional structure was determined by X-ray diffraction methods. The enzyme crystallized in the monoclinic spacegroup C2 with the cell dimensions a=168.1 A, b=91.3 A, c=85.7 A, beta=91.4 degrees. The diffraction limit of these crystals was 2.2 A. The crystals were very stable in the X-ray beam and measured diffraction data of a single crystal had a completeness of 99.5 % up to a resolution of 2.2 A. The crystal structure of S. acidocaldarius superoxide dismutase was solved by Patterson search methods using a dimer of Thermus thermophilus superoxide dismutase as a search model. The asymmetric unit accommodates three dimers. Two dimers form a tetramer by using only local symmetries; the third dimer forms a tetramer as well, however, by using the crystallographic 2-fold symmetry. The three-dimensional structure of the S. acidocaldarius dismutase has typical features of tetrameric dismutases. Secondary structure elements as well as residues important for the catalytic activity of the enzyme were found to be highly conserved. The model was refined at a resolution of 2.2 A and yielded a crystallographic R-value of 17.4 % (Rfree=22.3 %). A structural comparison of the two extremely stable tetrameric dismutases from S. acidocaldarius and Aquifex pyrophilus with the less stable enzyme from T. thermophilus and Mycoplasma tuberculosis revealed the structural determinants which are probably responsible for the high intrinsic stability of S. acidocaldarius dismutase. The most obvious factor which may give rise to the extraordinary thermal stability of S. acidocaldarius dismutase (melting temperature of about 125 degreesC) is the increase in intersubunit ion pairs and hydrogen bonds and, more importantly, the significant reduction of solvent-accessible hydrophobic surfaces, as well as an increase in the percentage of buried hydrophobic residues.  相似文献   

14.
The incidence of stress fractures is increasing among competitive and recreational athletes as well as among children and the elderly. By understanding the continuum of bone's response to stress and maintaining an appropriate index of suspicion, the health care provider can diagnose these injuries appropriately. An accurate history and examination is essential and will differentiate stress fractures from other stress reactions. The more common stress fractures are discussed.  相似文献   

15.
Possible roles of the Cys side chains in the activation and inactivation mechanisms of brewers' yeast pyruvate decarboxylase were investigated by comparing the behavior of the tetrameric enzyme pdc1 containing four cysteines/subunit (positions 69, 152, 221, and 222) with that of a fusion enzyme (pdc1-6, a result of spontaneous gene fusion between PDC1 and PDC6 genes) that is 84% identical in sequence with pdc1 and has only Cys221 (the other three Cys being replaced by aliphatic side chains). The two forms of the enzyme are rather similar so far as steady-state kinetic parameters and substrate activation are considered, as tested for activation by the substrate surrogate pyruvamide. Therefore, if a cysteine is responsible for substrate activation, it must be Cys221. The inactivation of the two enzymes was tested with several inhibitors. Methylmethanethiol sulfonate, a broad spectrum sulfhydryl reagent, could substantially inactivate both enzymes, but was slightly less effective toward the fusion enzyme. (p-Nitrobenzoyl)formic acid is an excellent alternate substrate, whose decarboxylation product p-nitrobenzaldehyde inhibited both enzymes possibly at a Cys221, the only one still present in the fusion enzyme. Exposure of the fusion enzyme, just as of pdc1, to (E)-2-oxo-4-phenyl-3-butenoic acid type inhibitors/alternate substrates enabled detection of the enzyme-bound enamine intermediate at 440 nm. However, unlike pdc1, the fusion enzyme was not irreversibly inactivated by these substrates. These substrates are now known to cause inactivation of pdc1 with concomitant modification of one Cys of the four [Zeng, X.; Chung, A.; Haran, M.; Jordan, F. (1991) J. Am. Chem. Soc. 113, 5842-49].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In Escherichia coli, flavodoxin is the physiological electron donor for the reductive activation of the enzymes pyruvate formate-lyase, anaerobic ribonucleotide reductase, and B12-dependent methionine synthase. As a basis for studies of the interactions of flavodoxin with methionine synthase, crystal structures of orthorhombic and trigonal forms of oxidized recombinant flavodoxin from E. coli have been determined. The orthorhombic form (space group P2(1)2(1)2(1), a = 126.4, b = 41.10, c = 69.15 A, with two molecules per asymmetric unit) was solved initially by molecular replacement at a resolution of 3.0 A, using coordinates from the structure of the flavodoxin from Synechococcus PCC 7942 (Anacystis nidulans). Data extending to 1.8-A resolution were collected at 140 K and the structure was refined to an Rwork of 0.196 and an Rfree of 0.250 for reflections with I > 0. The final model contains 3,224 non-hydrogen atoms per asymmetric unit, including 62 flavin mononucleotide (FMN) atoms, 354 water molecules, four calcium ions, four sodium ions, two chloride ions, and two Bis-Tris buffer molecules. The structure of the protein in the trigonal form (space group P312, a = 78.83, c = 52.07 A) was solved by molecular replacement using the coordinates from the orthorhombic structure, and was refined with all data from 10.0 to 2.6 A (R = 0.191; Rfree = 0.249). The sequence Tyr 58-Tyr 59, in a bend near the FMN, has so far been found only in the flavodoxins from E. coli and Haemophilus influenzae, and may be important in interactions of flavodoxin with its partners in activation reactions. The tyrosine residues in this bend are influenced by intermolecular contacts and adopt different orientations in the two crystal forms. Structural comparisons with flavodoxins from Synechococcus PCC 7942 and Anaebaena PCC 7120 suggest other residues that may also be critical for recognition by methionine synthase.  相似文献   

17.
18.
BACKGROUND: L(+)-Lactate dehydrogenase (LDH) catalyzes the last step in anaerobic glycolysis, the conversion of pyruvate to lactate, with the concomitant oxidation of NADH. Extensive physicochemical and structural investigations of LDHs from both mesophilic and thermophilic organisms have been undertaken in order to study the temperature adaptation of proteins. In this study we aimed to determine the high-resolution structure of LDH from the hyperthermophilic bacterium Thermotoga maritima (TmLDH), the most thermostable LDH to be isolated so far. It was hoped that the structure of TmLDH would serve as a model system to reveal strategies of protein stabilization at temperatures near the boiling point of water. RESULTS: The crystal structure of the extremely thermostable TmLDH has been determined at 2.1 A resolution as a quaternary complex with the cofactor NADH, the allosteric activator fructose-1,6-bisphosphate, and the substrate analog oxamate. The structure of TmLDH was solved by Patterson search methods using a homology-based model as a search probe. The native tetramer shows perfect 222 symmetry. Structural comparisons with five LDHs from mesophilic and moderately thermophilic organisms and with other ultrastable enzymes from T. maritima reveal possible strategies of protein thermostabilization. CONCLUSIONS: Structural analysis of TmLDH and comparison of the enzyme to moderately thermophilic and mesophilic homologs reveals a strong conservation of both the three-dimensional fold and the catalytic mechanism. Going from lower to higher physiological temperatures a variety of structural differences can be observed: an increased number of intrasubunit ion pairs; a decrease of the ratio of hydrophobic to charged surface area, mainly caused by an increased number of arginine and glutamate sidechains on the protein surface; an increased secondary structure content including an additional unique 'thermohelix' (alphaT) in TmLDH; more tightly bound intersubunit contacts mainly based on hydrophobic interactions; and a decrease in both the number and the total volume of internal cavities. Similar strategies for thermal adaptation can be observed in other enzymes from T. maritima.  相似文献   

19.
20.
To eliminate potential "backward" priming effects, S. Glucksberg et al (see record 1986-29080-001) introduced a variant of the cross-modal lexical priming task in which subjects made lexical decisions to nonword targets that were modeled on a word related to either the contextually biased or unbiased sense of an ambiguous word. Lexical decisions to nonwords were longer than controls only when the nonword was related to the contextually biased sense of the ambiguous word, leading Glucksberg et al to conclude that context does constrain lexical access and that the multiple access pattern observed in previous studies was probably an artifact of backward priming. We did not find nonword interference when the nonword targets used by Glucksberg et al were preceded by semantically related ambiguous or unambiguous word primes. However, we did replicate their sentence context results when the ambiguous words were removed from the sentences. We conclude that the interference obtained by Glucksberg et al is due to postlexical judgments of the congruence of the sentence context and the target, not to context constraining lexical access. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号