首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CdO doped (doping concentration 0, 1, 3 and 16 wt%) ZnO nanostructured thin films are grown on quartz substrate by pulsed laser deposition and the films are annealed at temperature 500 °C. The structural, morphological and optical properties of the annealed films are systematically studied using grazing incidence X-ray diffraction (GIXRD), energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), Micro-Raman spectra, UV–vis spectroscopy, photoluminescence spectra and open aperture z-scan. 1 wt% CdO doped ZnO films are annealed at different temperatures viz., 300, 400, 500, 600, 700 and 800 °C and the structural and optical properties of these films are also investigated. The XRD patterns suggest a hexagonal wurtzite structure for the films. The crystallite size, lattice constants, stress and lattice strain in the films are calculated. The presence of high-frequency E2 mode and the longitudinal optical A1 (LO) modes in the Raman spectra confirms the hexagonal wurtzite structure for the films. The presence of CdO in the doped films is confirmed from the EDX spectrum. SEM and AFM micrographs show that the films are uniform and the crystallites are in the nano-dimension. AFM picture suggests a porous network structure for 3% CdO doped film. The porosity and refractive indices of the films are calculated from the transmittance and reflectance spectra. Optical band gap energy is found to decrease in the CdO doped films as the CdO doping concentration increases. The PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. The 16CdZnO film shows an intense deep green PL emission. Non-linear optical measurements using the z-scan technique indicate that the saturable absorption (SA) behavior exhibited by undoped ZnO under green light excitation (532 nm) can be changed to reverse saturable absorption (RSA) with CdO doping. From numerical simulations the saturation intensity (Is) and the effective two-photon absorption coefficient (β) are calculated for the undoped and CdO doped ZnO films.  相似文献   

2.
Optical properties of the as-deposited and annealed ZnPc layers have been investigated using absorption, reflectance and modulated photoreflectance methods. The absorption coefficient of ZnPc layers was directly determined from the transmission and reflection spectra. The absorption spectra were analyzed in terms of the mixed Lorentz–Lorenz model. We found that annealing thin layers at 580 K caused a structural transformation, which results in the decrease of the absorption coefficient and the shifting of all peak position to lower energies except for the peak of the N-band. Photoreflectance spectroscopy confirmed that there exist three transitions in the Q-band region of the studied material. Complex refractive index and dielectric constants of the ZnPc layer were directly found from the spectral data.  相似文献   

3.
The effects of laser irradiation on the surface microstructure and optical properties of ZnO films deposited on glass substrates were investigated experimentally and compared with those of thermal annealing. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements showed that the irradiation treatment with an Ar+ laser of 514 nm for 5 min improves the crystalline quality of ZnO thin films through increasing the grain size and enhancing the c-axis orientation, with the effects similar to those of the thermal annealing at 500 °C for 1 h. Laser irradiation was found to be more effective both for the relaxation of the residual compressive stress in the as-grown films and for the modification of the surface morphology. A significant increase in the UV absorption and a widening in the optical band-gap of the films were also observed after laser irradiation.  相似文献   

4.
ZnS thin films prepared on quartz substrates by the chemical bath deposition (CBD) method with three type temperature profile processes have been investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray analysis and light transmission. One is a 1-step growth process, and the other is 2-steps growth and self-catalyst growth processes. The surface morphology of CBD-ZnS thin films prepared by the CBD method with the self-catalyst growth process is flat and smooth compared with that prepared by the 1-step and 2-steps growth processes. The self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement in crystallinity of ZnS thin films prepared by CBD. ZnS thin films prepared by CBD method with self-catalyst growth process can be expected for improvement in the conversion efficiency of Cu(InGa)Se2-based thin film solar cells by using it for the buffer layer.  相似文献   

5.
In this paper we present photoemission studies of the influence of 12-hour exposure to the ambient air on the chemical and electronic properties of thin 16-nm copper phthalocyanine (CuPc) sensing layers deposited on n- and p-type silicon Si(111) substrates covered with the native oxide. The surface chemistry and electronic parameters of organic thin film including surface band bending, work function, electron affinity and their variations upon the exposure have been monitored with X-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy techniques. We found that after the exposure, the surface chemistry of CuPc remained unaffected, however the work function and surface band bending increased by 0.55 eV and 0.45 eV for the layers on n-Si and by 0.25 eV and 0.30 eV for those on p-Si. Additionally, we detected a slight surface dipole at CuPc on n-Si manifested by a small shift in electron affinity of 0.10 eV. In order to explain these changes we developed a model basing on the interaction of ionic species with the phthalocyanine surface.  相似文献   

6.
In this study, transparent conducting aluminum-doped ZnO thin films (AZO) were deposited on glass substrates by a water-based liquid phase deposition method. The results show that by employing a two-step post-deposition heat treatment, the preferential orientation of ZnO (002) appeared as soon as the polycrystalline films were formed. Under a reducing atmosphere, the crystallinity of the films was effectively improved. Furthermore, the reducing atmosphere was also beneficial for the removal of the residual stress of the prepared films and the c-axis lattice constant was less stretched as compared to those under an inert atmosphere at identical Tp. Both the atomic force micrograph and scanning electron micrograph clearly exhibited that the heat treatment induced considerable grain growth. The X-ray photoelectron spectrum revealed that the heat treatment atmosphere had little impact on the bonding state of zinc and that the reducing atmosphere was favorable for the non-stoichiometric alumina, which in turn, resulted in more oxygen vacancies and led to improvement in electrical conductivity. The ratio of chemisorbed oxygen declined substantially when applying the reducing atmosphere. Accordingly, hydrogen was helpful for the reduction of chemisorbed oxygen onto AZO films. Generally, the electrical resistivity declined linearly with Tp. A minimum resistivity of 9.90 × 10− 3 Ω·cm was obtained with a doping concentration of Al/Zn = 2.25 at.% at Tp = 700 °C. The largest mean free path of the carriers was 1.2 Å, which was much smaller than the observed grain sizes of the AZO films. Accordingly, the grain boundary scattering was not the detrimental scattering mechanism. In contrast, the scattering within the grains was responsible for the low mobility. An increase in optical transparency with the heat treatment temperature was observed due to the compact and smooth topography with larger grains, among which, less porous structures were formed at elevated temperature.  相似文献   

7.
Comparative study of substrate doping influence on surface morphology of 16-nm CuPc ultra-thin layers deposited on RCA-cleaned Si (111)/SiO2 substrates was carried out. The structure and the morphology of thin films were investigated by X-ray photoelectron spectroscopy and atomic force microscopy. The investigations were aimed to provide information whether substrate doping type can be used as one of the parameters for engineering of the sensing layers structure. Atomic force microscopy images and results of photoemission experiments did not reveal any significant differences in morphology and surface chemistry between used substrates. Observed differences in surface morphology of organic overlayer could be caused by different substrate doping. The CuPc film grown on p-type RCA-Si (111) shows a compact network of densely packed crystallites, while the CuPc film deposited on n-type RCA-Si (111) reveals a slightly more open network of larger crystallites. These observations are confirmed by values of roughness, which is 0.97 nm and 1.47 nm for CuPc film on RCA-cleaned p- and n-type substrates, respectively. Results were compared with data obtained for similar 16-nm-thick CuPc layers deposited on n- and p-type Si (111) covered with native oxide. Good agreement between results of both studies was found out.  相似文献   

8.
Exposure with above band gap light and thermal annealing at a temperature near to glass transition temperature, of thermally evaporated amorphous (As2S3)0.87Sb0.13 thin films of 1 μm thickness, were found to be accompanied by structural effects, which in turn, lead to changes in the optical properties. The optical properties of thin films induced by illumination and annealing were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photo darkening or photo bleaching was observed in the film depending upon the conditions of the light exposure or annealing. These changes of the optical properties are assigned to the change of homopolar bond densities.  相似文献   

9.
A comparative characterization of C60 thin films grown on silicon substrate by Physical Vapor Deposition and polymerized by chemical reaction with 1,8-octanediamine vapor or UV Pulsed laser irradiation has been carried out by means of Atomic Force Microscopy, and optical reflectance, transmittance and photoluminescence spectroscopies. The photovoltaic response and electrical characteristics of Au/C60/Si diode structures have been investigated. The greatest photoluminescence efficiency and light transmittance, and at the same time the least photocurrent of diode structure were observed for chemically polymerized C60. Found differences in morphology, optical, photoelectric and electrical properties of C60 films polymerized by two methods indicate a difference in their composition.  相似文献   

10.
The B-N codoped p-type ZnO thin films have been prepared by radio frequency magnetron sputtering using a mixture of nitrogen and oxygen as sputtering gas. The effect of annealing temperature on the structural, electrical and optical properties of B-N codoped films was investigated by using X-ray diffraction, Hall-effect, photoluminescence and optical transmission measurements. Results indicated that the electrical properties of the films were extremely sensitive to the annealing temperature and the conduction type could be changed dramatically from n-type to p-type, and finally changed to weak p-type in a range from 600 °C to 800 °C. The B-N codoped p-type ZnO film with good structural, electrical and optical properties can be obtained at an intermediate annealing temperature region (e.g., 650 °C). The codoped p-type ZnO had the lowest resistivity of 2.3 Ω cm, Hall mobility of 11 cm2/Vs and carrier concentration of 1.2 × 1017 cm− 3.  相似文献   

11.
Undoped ZnO films were grown on a c-plane sapphire by plasma-assisted molecular-beam epitaxy technique, and subsequently annealed at 200-500 °C with steps of 100 °C in water vapour and hydrogen ambient, respectively. It is found that the c-axis lattice constant of the ZnO films annealed in hydrogen or water vapour at 200 °C increases sharply, thereafter decreases slowly with increasing annealing temperature ranging from 300 °C to 500 °C. The stress in the as-grown ZnO films was more easily relaxed in water vapour than in hydrogen ambient. Interestingly, the controversial luminescence band at 3.310 eV, which is often observed in photoluminescence (PL) spectra of the ZnO films doped by p-type dopants, was observed in the PL spectra of the annealed undoped ZnO films and the PL intensity increases with increasing annealing temperature, indicating that the 3.310 eV band is not related to p-type doping of ZnO films. The electron concentration of the ZnO films increases sharply with increasing annealing temperature when annealed in hydrogen ambient but decreases slowly when annealed in water vapour. The mechanisms of the effects of annealing ambient on the properties of the ZnO films are discussed.  相似文献   

12.
In this study, preparation of Nb-doped (0-20 mol% Nb) TiO2 dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of Nb on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films was examined by atomic force microscope and X-ray photoelectron spectroscopy. XRD and Raman study showed that the Nb doping inhibited the grain growth. The photo-catalytic activity of the film was tested on degradation of methylene blue. Best photo-catalytic activity of Nb-doped TiO2 thin films were measured in the TiO2-1 mol% Nb sample. The average optical transmittance of about 47% in the visible range and the band gap of films became wider with increasing Nb doping concentration. The Nb5+ dopant presented substitutional Ti4+ into TiO2 lattice.  相似文献   

13.
Titanium oxide thin films are deposited at room temperature by reactive DC sputtering onto glass and Si (100) substrates. Different conditions of deposition were varied such as sputtering power, deposition time and oxygen partial pressure to study their influence on the titanium oxide thin films growth. The absolute amount of oxygen and the relative O/Ti composition of films have been determined by Nuclear Reaction Analysis and Rutherford Backscattering Spectroscopy, respectively. Additionally, the band-gap was determined by measuring the optical absorption and its behavior correlated with the oxygen film content. From the present study, it is possible to establish that the optical band-gap energy depends mainly on the sputtering oxygen partial pressure used at the preparation and that films prepared with a partial oxygen pressure of 4 × 10− 2 Pa allows titanium oxide with near stoichiometric composition. Additionally, from the optical point of view, band-gap energies of 3.4 eV are obtained for near stoichiometric films and a decrease is observed for samples prepared with higher oxygen concentrations.  相似文献   

14.
Indium molybdenum oxide thin films were RF sputtered at room temperature on glass substrates with a reference base pressure of 7.5 × 10− 4 Pa. The electrical and optical properties of the films were studied as a function of oxygen partial pressures (OPP) ranging from 1.5 × 10− 3 Pa to 3.5 × 10− 3 Pa. The obtained data show that the bulk resistivity of the films increased by about 4 orders of magnitude (from 7.9 × 10− 3 to 7.6 × 10Ω-cm) when the OPP increased from 1.5 × 103 to 3.5 × 10− 3 Pa, and the carrier concentration decreased by about 4 orders (from 1.77 × 1020 to 2.31 × 1016 cm− 3). On the other hand, the average visible transmittance of 30.54% of the films (brown colour; OPP = 1.5 × 10− 3 Pa) was increased with increasing OPP to a maximum of 80.47% (OPP = 3.5 × 10− 3 Pa). The optical band gap calculated from the absorption edge of the transmittance spectra ranges from 3.77 to 3.88 eV. Further, the optical and electrical properties of the films differ from those deposited at similar conditions but with a base pressure lower than 7.5 × 10− 4 Pa.  相似文献   

15.
We present our results on nonlinear optical (NLO) and optical limiting properties of Tetra tert-butyl phthalocyanine and Zinc tetra tert-butyl phthalocyanine studied at 633 nm using a continuous wave laser. We have evaluated the sign and magnitude of the third-order nonlinearity from the closed aperture Z-scan data while the nonlinear absorption properties were assessed using the open aperture data. We have observed low power optical limiting, with low limiting thresholds, based on nonlinear refraction in both the samples. We also present results on the NLO properties of the same dyes doped in Polymethylmethacrylate (PMMA). These studies indicate that both the phthalocyanines are potential candidates for low power optical limiting applications.  相似文献   

16.
Polyaniline thin films prepared by RF plasma polymerisation were irradiated with 92 MeV Si ions for various fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. FTIR and UV-vis-NIR measurements were carried out on the pristine and Si ion irradiated polyaniline thin films for structural evaluation and optical band gap determination. The effect of swift heavy ions on the structural and optical properties of plasma-polymerised aniline thin film is investigated. Their properties are compared with that of the pristine sample. The FTIR spectrum indicates that the structure of the irradiated sample is altered. The optical studies show that the band gap of irradiated thin film has been considerably modified. This has been attributed to the rearrangement in the ring structure and the formation of CC terminals. This results in extended conjugated structure causing reduction in optical band gap.  相似文献   

17.
18.
Cu doped zinc titanate (ZnTiO3) films were prepared using radio frequency magnetron sputtering. Subsequent annealing of the as-deposited films was performed at temperatures ranging from 600 to 900 °C. It was found that the as-deposited films were amorphous and contained 0.84 at.% Cu. This was further confirmed by the onset of crystallization that took place at annealing temperatures 600 °C. The phase transformation for the as-deposited films and annealed films was investigated in this study. The results showed that Zn2Ti3O8, ZnTiO3, and TiO2 can coexist at 600 °C. When annealed at 700 °C, the results revealed that mainly the hexagonal ZnTiO3 phase formed, accompanied by minority amounts of TiO2 and Zn2Ti3O8. Unlike pure zinc titanate films, this result showed that the Zn2Ti3O8 phase can be stable at temperatures above 700 °C. Moreover, Cu addition in zinc titanate thin film could result in the decomposition of hexagonal (Zn,Cu) TiO3 phase at 800 °C. When the Cu content was increased in zinc titanate thin films from 0.84 at.% to 2.12 at.%, there were only two phases; Zn2Ti3O8 and ZnTiO3, coexisting at temperatures between 700 and 800 °C. This result indicated that a greater presence of Cu dopants in zinc titanate thin films leads to the existence of the Zn2Ti3O8 phase at higher temperatures.  相似文献   

19.
Herein investigation of the effects of substrate temperature on the structural and morphological features of both cobalt(II) phthalocyanine (CoPc) and cobalt(II) hexadecafluorophthalocyanine (CoPcF16) thin films is presented. For these purposes thin films of CoPc and CoPcF16 prepared by organic molecular beam deposition were investigated by means of optical absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and atomic force microscopy. Concerning the degree of crystallinity, the morphology, the phase composition and the preferential molecular orientation of both CoPc and CoPcF16 thin films, we found out that the increase of substrate temperature during growth influences these properties of the above-mentioned thin film systems (CoPc vs. CoPcF16) in a different way.  相似文献   

20.
In this paper native and RCA-treated n- and p-doped Si(111) substrates and ultra-thin 16-nm copper phthalocyanine (CuPc) layers deposited thereon were investigated using X-ray Photoemission Spectroscopy and Angle-Resolved X-ray Photoemission Spectroscopy. The oxide layer thickness was determined to be 1.3 nm on the RCA-treated substrates and 0.8 nm on the native ones. The analysis of substrate carbon contamination showed the existence of C-H, C-OH and COOH components on all substrates. The RCA clean removes more readily the carbon components with the OH group from the n-type Si and causes the segregation of the contaminants. The initial carbon species propagate in the evaporated CuPc layer up to a thickness of about 5 nm affecting the shape of the C1s peak. Additionally, the behavior of the binding energy difference between N1s and Si2p peaks upon the CuPc growth shows that there may occur various CuPc molecule adsorption modes on investigated Si substrates. It could be a useful information, from the technological point of view, especially for low dimensional electronic device preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号