首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport properties of3He in3He-4He solutions with molar concentrations of 5, 9, 14, and 24% have been studied for 0.9 KT2.5 K. The spin diffusion coefficientD s and the longitudinal relaxation timeT 1 were measured by the spin-echo method for temperatures both above and below the solution lambda temperatureT . The spin-echo method measures the diffusion coefficient for magnetizationD s, which differs from the usual diffusion coefficient for particlesD belowT .D s depends on the3He-3He scattering cross section FF and the3He-roton/phonon cross section FB, whileD depends only on FB. The distinction betweenD s andD is elaborated in terms of a simple mutual-friction model for diffusion. The two scattering mechanisms are clearly evident in the behavior ofD s as a function of concentrationx and temperature. The contribution due to the3He-3He scattering is inversely proportional tox, indicating that the3He can be treated in first approximation as a classical gas (the Pomeranchuk model). The predictions of various theoretical models are compared with the results, where possible, but most of the previous theoretical work is not applicable to the concentration range and temperatures of these measurements.Supported in part by the National Science Foundation and the U.S. Office of Naval Research.  相似文献   

2.
The interfacial tension 1 of phase-separated3He-4He mixtures has been measured between 0.5 K and the tricritical point. The observed decrease of i on approaching the tricritical point is much stronger than for ordinary critical points. Our data are consistent with a critical exponent =2.  相似文献   

3.
We report the results of our systematic study of the phase separation in supersaturated 3He-4He liquid mixtures of the 3He-dilute phase. The amount of the critical supersaturation is determined within the wide ranges of the temperature (0.4–645mK) and the pressure (1–8.5kgf/cm2). Using the data we construct the surface of critical supersaturation, x 3,cr (T,P), which enables us to recognize almost the overall behavior of the critical supersaturation in superfluid 3He-4He mixtures. The main specific features observed are (i) below 10mKx 3, cr is almost temperature-independent, (ii) above 10mK up to 500mKx 3, cr increases with the temperature, and (iii) above 500mKx 3, cr decreases smoothly with the increase of temperature down to zero at the tricritical point. We give various discussions from the viewpoint of the quantum nucleation, the classical thermal nucleation and the crossover between them.  相似文献   

4.
A torsional oscillator cell is described, by means of which simultaneous precision measurements of () and of the molar volume can be made in liquid 4He-4He mixtures over the temperature range between 0.5 and 3 K. Here is the mass density, the shear viscosity and in the superfluid phase they become the contributions n and n of the normal component. The results of for 4He near the superfluid transition are compared with the predictions by Schloms, Pankert and Dohm, and by Ferrell. Measurements of () are reported for mixtures with 0.64X0.74, where X is the 3He mole fraction. Those for X = 0.67 and 0.70 are compared with data by Lai and Kitchens. The viscosity experiments show no evidence of a weak singularity at the tricritical point.  相似文献   

5.
The specific heat under saturated vapor pressure of pure 4He and of six 3He-4He mixtures up to X = 0.545 was measured in the temperature range 3 × 10–6T-T ¦ <10–2 K. The critical exponents and along the path = are independent of X up to X = 0.545, where (= 34) is the difference between chemical potentials. If we take account of higher order terms, the exponent (= ) and the amplitude ratio A /A are independent of X up to X = 0.545. The values of and A /A are –0.023 and 1.090, respectively. The critical-tricritical crossover effect was observed for X = 0.545 and the boundary of crossover region closest to the critical region was at /T = (1–2) × 10–4, where is the distance ¦TT ¦ along the path = . This value is in good agreement with the estimated value by Riedel et al. But, remarkably, in the case of X = 0.439 this effect was not observed.  相似文献   

6.
Precision first-sound measurements at 17.1 kHz are presented for a 5%3He-4He solution. Measurements near the transition are analyzed with a modified Pippard-Buckingham-Fairbank relation using recent3He-4He heat-capacity measurements. The analysis takes into account the effects of gravity and dispersion. An accurate determination of (P/)T is obtained from velocity measurements in the range 1.1–2.0 K.Work at the University of California was supported in part by the U.S. Office of Naval Research.Part of this work was performed during the author's postdoctoral year (1967) at the Physics Department of the University of California at Los Angeles.  相似文献   

7.
We propose a 1-t1-2 pulse-NMR experiment to detect the spin-diffusion anisotropy, =D-D, in degenerate spin-polarized3He-4He mixtures, where D and dare the transverse and longitudinal spin diffusion coefficients. In such an experiment the nonlinearity of the dynamics produces multiple spin echoes (MSE). At the 3He concentration x3 4% the spinrotation parameter vanishes (M 0), so that the nonlinearity of the equations of motion is entirely due to the anisotropy. In this situation, detection of MSE amounts to observation of D. For slight anisotropy, i.e. D/D 0.25, we use a perturbation scheme similiar to that developed by Einzel et al. (in that case, for small M and small demagnetizing field) to calculate the second and third echo heights. For larger anisotropy we numerically calculate the echo heights. We find that for D/D = 0.5 the heights are 2 % of the first echo, and should be detectable. The (1, 2) tip-angle dependence of the D echoes is different from that of the M and demagnetization echoes, and furthermore, they occur at right angles to these echoes (in spin space). Thus, even when small spin-rotation and demagnetization effects are present, the 1-t1-2 experiment provides a sensitive means of detecting the anisotropy.  相似文献   

8.
The formula for the velocity of second sound in dilute3He-4He mixtures is derived, taking due account of both the effects of the interactions between the3He quasiparticles and their dispersion. The theory is compared to the recent experimental results of Greywall and Paalanen, and from this comparison it is possible to obtain both the inertial mass and the specific heat effective mass. Both masses are consistent with the mass in infinitely dilute solutions being (2.245±0.01)m 3. Previous analyses of the velocity of second sound are critically discussed.  相似文献   

9.
Measurements of the acoustic attenuation and dispersion in liquid 3He-4He mixtures near the superfluid transition T (x) are reported. The frequency range is /2gp=1–45 MHz and the 3He mole fraction X of the mixtures is 0.007, 0.05, 0.15, and 0.36. Comparisons are made with the measurements of Buchal and Pobell for similar mixtures obtained in the kHz region, and on the whole, the consistency between the two experiments is very satisfactory. An analysis is then performed using both the kHz and MHz data. In the normal phase, where the energy dissipation is caused by order parameter fluctuations having a lifetime F , the attenuation data can all be scaled according to the expression = (T )f(F. Here (T )1+y, with y being a function of the mole fraction X and F(TT )–x, with x increasing weakly with X. In the superfluid phase, we attempt a similar scaling representation, which is found to be fairly successful, but where x(T\s-T ) is roughly 15% larger than x(T>T ). In the superfluid phase we also analyze the attenuation data, assuming the additivity of relaxation and fluctuation-dissipation mechanism, and discuss the relaxation times so derived. In contrast to the attenuation, the dispersion data cannot be brought satisfactorily into a scaling representation. However, at T , we find U()-U(0)y as predicted by Kawasaki, where y is in good agreement with the values from attenuation experiments.Supported by a grant from the National Science Foundation.  相似文献   

10.
Using superleak condenser transducers, the velocity of second soundU 2 has been measured near the superfluid transition temperature T in3He-4He mixtures with molar concentrationsX of3He of 0.0, 0.038, 0.122, 0.297, and 0.440. We have obtained the superfluid density s/ fromU 2 on the basis of linearized two-fluid hydrodynamics. The results for s/ are consistent with those obtained from the oscillating disk method, as expected from two-fluid hydrodynamics. The value of s/ at eachX could be expressed by a single power law, s/=k, where =1-T/R, with the experimental uncertainty. It is found that the exponent is independent of concentration forX0.44 within the experimental uncertainty. This concentration independence of is in agreement with the universality concept. From the conclusion that the values of are universal forX0.44, the concentration dependence of the superfluid component s is expressed by an empirical equation s(X, )=2s(0, ). It is found that corresponds to the volume fraction of4He in the superfluid3He-4He mixture. The value of is in agreement with that obtained from the measurement of the molar volume by others.This paper is based on a thesis submitted to Tokyo University of Education in partial fulfillment of the requirements for the Ph.D. degree.  相似文献   

11.
Measurements of the thermal conductivity are reported for an 80%3He-20%4He mixture above the critical point along several isotherms and near-critical isochores, using the same techniques and apparatus described for a study of3He. Using again the assumption that the observed conductivity can be decomposed into a sum of a regular and a singular contribution reg and sing, it is shown that along two near-critical isochores, sing diverges. In particular, along the isochore showing the largest at the phase transition, the divergence is nearly the same as for3He and can be roughly characterized by a simple power law (T-Tc) with 0.58. This observation is contrary to predictions that foresee sing0 asT c is approached. The relaxation times characterizing the attainment of steady state conditions after switching the heat flux on and off show a similar behaviour as a function of reduced temperature as do those for pure3He. This result might indicate a substantial coupling between concentration and entropy diffusion. In the Appendix, the correlation length for3He nearT c is calculated from heat conductivity, viscosity, and specific heat data.Work supported by Grant DMR 8024056 of the National Science Foundation.  相似文献   

12.
We report third-sound studies of3He-4He mixture films for 0.3T1.8 K carried out in two different experimental situations. In one experiment detailed measurements of the amplitude of both the temperature and thickness variation of the film were made for pure4He and the results for |T/d| are in good agreement with the predictions of Bergman. Mixture studies in this apparatus were made difficult due to the presence of capillary condensation. In spite of this a number of interesting results are reported. Subsequent measurements were made in a new apparatus where capillary condensation effects could be demonstrably avoided. Helium films of 5.7 layers of4He were studied as a function of added amounts of3He. BelowT0.7 K the third-sound measurements are consistent with model calculations based on a bilayer film. We conclude that for 0.3T0.6 K films of the type we have studied are isotopically layered in the van der Waals field provided by the substrate.  相似文献   

13.
High-resolution measurements of are reported for liquid4He and3He-4He mixtures at saturated vapor pressures between 1.2 and 4.2 K with particular emphasis on the superfluid transition. Here is the mass density, the shear viscosity, and in the superfluid phase both and are the contributions from the normal component of the fluid ( n and n ). The experiments were performed with a torsional oscillator operating at 151 Hz. The mole fraction X of3He in the mixtures ranged from 0.03 to 0.65. New data for the total density and data for n by various authors led to the calculation of . For4He, the results for are compared with published ones, both in the normal and superfluid phases, and also with predictions in the normal phase both over a broad range and close to T. The behavior of and of in mixtures if presented. The sloped/dT near T and its change at the superfluid transition are found to decrease with increasing3He concentration. Measurements at one temperature of versus pressure indicate a decreasing dependence of on molar volume asX(3He) increases. Comparison of at T, the minimum of n in the superfluid phase and the temperature of this minimum is made with previous measurements. Thermal conductivity measurements in the mixtures, carried out simultaneously with those of , revealed no difference in the recorded superfluid transition, contrary to earlier work. In the appendices, we present data from new measurements of the total density for the same mixtures used in viscosity experiments. Furthermore, we discuss the data for n determined for4He and for3He-4He mixtures, and which are used in the analysis of the data.  相似文献   

14.
The superfluid hydrodynamics of heat flow is examined for very small mass concentrationsc of3He in4He in an effort to better understand recent results for the effective heat conductivity eff, which appear to be in conflict with predictions. The full hydrodynamics contains a thermal boundary layer; within this layer the temperature and concentration gradients differ from those in the bulk fluid. An examination of finite heating effects based on the ansatz eff c p for smallc shows distinctly different behavior for experimental determinations of eff whenp<1,p=1, andp>1. Thus, finite heating can be used as a probe to evaluate the exponentp.  相似文献   

15.
When a heat flux is switched on across a fluid binary mixture, steady state conditions for the temperature and mass concentration gradients T and c are reached via a diffusive transient process described by a series of terms modes involving characteristic times n . These are determined by static and transport properties of the mixture, and by the boundary conditions. We present a complete mathematical solution for the relaxation process in a binary normal liquid layer of heightd and infinite diameter, and discuss in particular the role of the parameterA=k T 2 (/c) T,P /TC P,c coupling the mass and thermal diffusion. Herek T is the thermal diffusion ratio, (/c) T,P –1 is the concentration susceptibility, is the chemical potential difference between the components, andC P,c is the specific heat. We present examples of special situations found in relaxation experiments. WhenA is small, the observable times (T) and (c) for temperature and concentration equilibration are different, but they tend to the same value asA increases. We present experimental results on four examples of liquid helium of different3He mole fractionX, and discuss these results on the basis of the preceding analysis. In the simple case for pure3He (i.e., in the absence of mass diffusion) we find the observed (T) to be in good agreement with that calculated from the thermal diffusivity. For all the investigated3He-4He mixtures, we observe (c) and (T) to be different whenA is small, a situation occurring at high enough temperatures. AsA increases with decreasingT, they become equal, as predicted. For the mixtures with mole fractionsX(3He)=0.510 and 0.603, we derive the mass diffusionD from the analysis of (c) and demonstrate that it diverges strongly with an exponent of about 1/3 in the critical region near the superfluid transition. As the tricritical point (T t,X t) is approached for the mixtureX=X t0.675,D tends to zero with an exponent of roughly 0.4. These results are consistent with predictions and also with theD derived from sound attenuation data. We discuss the difficulties of the analysis in the regime close toT andT t, with special emphasis on the situation created by the onset of a superfluid film along the wall of the cell forX=0.603 and 0.675.Work supported by grants from the National Science Foundation and the Research Corporation and by an A. P. Sloan fellowship to one of the authors (RPB).  相似文献   

16.
The transverse acoustic impedanceZ=R–iX of dilute solutions of3He in superfluid4He has been measured at a frequency (/2) of 20.5 MHz at temperaturesT from 30 mK to the transition at T. The3He concentrations studied werec=0.014, 0.031, 0.053, 0.060, and 0.092 below 1 K, thoughc decreased slightly near the point. The impedance was found from the temperature dependence of the quality factor and the resonant frequency of anAT-cut quartz crystal resonator immersed in the liquid. Below 1 K,Z is due to the Fermi gas of3He quasiparticles, and in the collisionless limit, 1 ( is a relaxation time),R remains constant whileX goes to zero. Measurements ofR(c, T) andX(c, T) were analyzed to determine the momentum accommodation coefficient (c, T) and (c, T). The relaxation times were in good agreement with previous work, while (c, T) was independent ofc, but increased from 0.29±0.03 below 0.1 K to 1.0±0.1 above 0.8 K. Various mechanisms are suggested to explain this. Between 1.0 and 1.5 K the3He quasiparticles and the thermally excited rotons are in the hydrodynamic region, 1. Values of the total viscosity (c, T) were obtained and analyzed to give the3He gas viscosity and the3He-3He and roton-3He scattering rates, both of which were energy-dependent. The superfluid healing length a was also measured. Near the point we founda=(0.1±0.03)–2/3 nm, where =1–T/T, proportional to the phase coherence length . Our data are consistent with the hypothesis that s/T is a universal constant for superfluid dilute solutions, where s is the superfluid density. Between 1.0 and 1.8 K we found thata(c, T) was comparable to measurements in3He-4He films.  相似文献   

17.
In a recent paper we made a calculation of the interfacial tension in a binary liquid solution. This involved consideration of the effects of composition gradient, and involved a characteristic length z giving the distance up or down the gradient over which a molecule was influenced by its neighbors. An equation was derived which related to z, the coexistence curve, properties of the critical point, and the thickness z of the interface. This equation has now been applied to3He-4He solutions, and its relation to scaling laws for the tricritical exponents has been discussed. This requires estimates of effective values of the tricritical exponents in the temperature range actually used from measurements in the literature of and other quantities, and from an estimate of z from the de Broglie wavelength, z has been estimated to be about 80Å at0.022 deg below the critical temperature. This has been compared to an estimate of the correlation length.Supported by the National Science Foundation.  相似文献   

18.
Simultaneous measurements of () and of the molar volume are reported for liquid mixtures of 3He in 4He over the temperature range between 0.5 and 2.5 K. Here is the shear viscosity and is the mass density. In the superfluid phase, the product of the normal components, n and n , is measured. The mixtures with 3He molefractions 0.30 < X < 0.80 are studied with emphasis on the region near the superfluid transition T and near the phase-separation curve. Along the latter, they are compared with data by Lai and Kitchens. For X > 0.5, the viscosity singularity near T becomes a faint peak, which however fades into the temperature-dependent background viscosity as X tends to the tricritical concentration X t. Likewise, no singularity in is apparent when T t is approached along the phase separation branches and +. Furthermore, viscosity data are reported for 3He and compared with previous work. Finally, for dilute mixtures with 0.01 X 0.05, the results for are compared with previous data and with predictions.  相似文献   

19.
From the second-sound velocityU 2 near the superfluid transition point, the superfluid densities in3He-4He mixtures, s (X) and s (), were deduced along the paths of constant3He concentrationX and of constant chemical potential difference of3He and4He. The following critical exponents of s are determined: (a) =XX for s (X) in the(X, T) plane,(b) X for s (X) in the(, T) plane, and(c) for s () in the(, T) plane. It is found that and X change by about 4–6% relative to with increasing3He concentration up toX=0.4 and by 8–10% up toX=0.53. It seems that, belowX=0.53, universality hold for . Values of have been found to be in good agreement with the critical exponent of s in pure4He under constant pressure. The values of and X forX0.53 are also found to be consistent with the scaling relations in the (,T) plane of3He-4He mixture.Work performed in part while at the Electrotechnical Laboratory.  相似文献   

20.
The dynamic structure function for 4 He- 4 He density correlationsS 44(k, ) is calculated as a function of the wave vectork and frequency for a simple model of a 3 He- 4 He solution at various temperatures and small 3 He molar concentrationx. The inputs to the model include the measured 4 He phonon spectrum and the zero-concentration 3 He quasiparticle energy (above thek=0 value), which is taken to be quadratic ink and to intersect the phonon spectrum atk c near the roton minimum. Taking into account the decay of a phonon into a quasiparticle-hole pair, which is effected in the model by a quantum hydrodynamic interaction, we find that the phonon spectrum is split into two distinct branches. Atk c the splitting of the phonon branches depends on a coupling constant and the crossover parameter (k c )/k c . If in 3 He- 4 He solutions is large enough and (k c )/k c is small enough, then the phonon spectrum is split into two branches.Work performed in part under the auspices of the U.S. Atomic Energy Commission.Resident Student Associate, Summer 1972, at Argonne National Laboratory, Argonne, Illinois.Supported in part by a Faculty Research Grant and Fellowship from the Horace H. Rackham School of Graduate Studies at the University of Michigan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号