首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了避免引入过多试剂,针对后处理Purex流程中将Pu(Ⅲ)氧化到Pu(Ⅳ)的调价过程,研究了一种新的催化氧化工艺。研究了在不同温度、酸度、肼浓度等条件下,硝酸体系中Pu(Ⅲ)的Pt催化氧化行为。结果表明:硝酸介质中Pu(Ⅲ)可以被Pt催化氧化为四价;在70℃条件下,当硝酸浓度大于3mol/L时,含支持还原剂肼的溶液中Pu(Ⅲ)的催化氧化调价可以很快实现,Pu(Ⅲ)氧化率大于99.9%;提高温度、加大酸度均有利于Pu(Ⅲ)的氧化;支持还原剂肼的量对其的催化氧化有一定的影响,肼的浓度升高,催化氧化的诱导期变长。  相似文献   

2.
研究了二氯苯基二硫代膦酸(DCPDTPA)在低浓度硝酸介质中对Pu(Ⅲ)的萃取行为,考察了萃取时间、萃取剂浓度、平衡水相pH值、盐析剂浓度以及温度等因素对萃取分配比的影响,确定了萃合物组成和萃取反应方程式。结果表明,DCPDTPA对Pu(Ⅲ)的萃取过程为阳离子交换机理,对应的反应为放热反应,萃取反应焓ΔH=(-11.7±0.7)kJ/mol,在298K时萃取表观反应平衡常数为(0.18±0.03)L/mol。  相似文献   

3.
双配位基有机磷萃取剂能够有效的从酸性核废液中直接萃取回收锕系和镧系元素。Siddall首次合成了这类化合物,引起人们很大的关注,目前已用于中间工厂规模冷实验阶段。本工作在文献[5,6]的基础上,研究DHDECMP萃取分离Pu(Ⅳ)-Am(Ⅲ)。由于DHDECMP在酸性介质中,对钚及超钚元素均能定量萃取而难以分离,本工作针对这一问题进行了初步探讨。  相似文献   

4.
短链羟肟酸对Pu(Ⅳ)的配位、还原及反萃   总被引:4,自引:0,他引:4  
在λ-19分光光度计上观测了加入甲羟肟酸(FHA)前后Pu(Ⅳ)-硝酸溶液的吸收光谱随时间的变化,并进行了甲、乙羟肟酸(FHA,AHA)对含铀的30%TBP/0K中Pu(Ⅳ)的反萃实验。结果表明:在硝酸溶液中短链羟肟酸能与Pu(Ⅳ)形成比较稳定的配合物,随着溶液放置时间的延长,溶液中的Pu(Ⅳ)逐渐被还原到Pu(Ⅲ),但该还原过程比较缓慢;在一定条件下,短链羟肟酸能有效地将有机相中的Pu(Ⅳ)反萃到水相,配位剂浓度的增加和反萃酸度的降低有利于短链羟肟酸对Pu(Ⅳ)的反萃。在同样条件下,AHA对Pu(Ⅳ)的反苯效果比FHA好。但这种差别随着配位剂浓度的增加和反萃酸度的降低而变小。  相似文献   

5.
Pu(Ⅳ)和硝酸的测定在核燃料后处理厂工艺控制分析中占有重要的地位。采用自行研制的分析装置,利用Pu(Ⅳ)和硝酸的近红外吸收光谱,结合偏最小二乘回归(PLS)法,建立了后处理工艺有机相料液中Pu(Ⅳ)和硝酸含量的同时快速分析方法。Pu(Ⅳ)及硝酸的浓度测量范围分别为0.15~15 g/L、0.05~0.80 mol/L,测量范围覆盖了后处理流程大部分的工艺点。料液中硝酸测量的相对标准偏差小于5%,Pu(Ⅳ)测量的相对标准偏差小于2%。模拟样品的分析结果通过t检验,Pu(Ⅳ)和硝酸的重加回收率均为95%~103%。  相似文献   

6.
研究了HNO3介质中甲基膦酸二甲庚酯(DMHMP)对Pu(Ⅳ)的萃取性能,考察了DMHMP浓度、NO-3浓度、HNO3浓度以及温度对Pu(Ⅳ)分配比的影响。确定了DMHMP萃取Pu(Ⅳ)的萃合物的组成为Pu(NO3)4·2DMHMP,其萃取反应方程式为:■其中Pu(Ⅳ)与NO-3形成中性分子,再与DMHMP结合成为中性配合物进入有机相。在实验范围内Pu(Ⅳ)分配比与DMHMP浓度的平方、NO-3浓度的四次方成正比,萃取过程为放热反应,反应的焓变为-34.46 kJ/mol。  相似文献   

7.
研究了甲醛肟(FO)与Pu(Ⅳ)的还原反应动力学,其动力学方程式为-dc(Pu(Ⅳ))/dt=kc(Pu(Ⅳ))c1.61(FO)c-0.88(H+),在18.7℃时,反应速率常数k=(110.39±7.70)(mol/L)-0.73/s,活化能为(68.82±3.00)kJ/mol。研究了甲醛肟浓度、H+浓度、硝酸根浓度、Fe3+浓度、UO22+浓度以及温度对甲醛肟与Pu(Ⅳ)还原反应速率的影响。结果表明:增加甲醛肟浓度、降低UO22+和H+浓度、增加Fe3+浓度以及升高温度,均使Pu(Ⅳ)还原速度增加;硝酸根浓度对甲醛肟还原Pu(Ⅳ)的速率基本无影响。  相似文献   

8.
研究了以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)和N,N-二己基辛酰胺(DHOA)为萃取剂,正十二烷为稀释剂体系对Pu(Ⅲ)、Pu(Ⅳ)和Pu(Ⅵ)的萃取行为,主要考察了萃取剂浓度、HNO3浓度和NaNO3浓度的影响。结果表明:TODGA和DHOA对Pu(Ⅲ)、Pu(Ⅳ)和Pu(Ⅵ)的萃取分配比大小顺序均为:D(Pu(Ⅲ))>D(Pu(Ⅳ))>D(Pu(Ⅵ)),TODGA/正十二烷体系中加入DHOA时,对Pu(Ⅲ,Ⅳ,Ⅵ)萃取具有一定抑制作用,但在较高酸度范围内(≥3.0 mol/L HNO3),不论体系中Pu的价态为何种形式,TODGA均能对其进行有效的回收。TODGA萃取Pu(Ⅲ,Ⅳ,Ⅵ)的方程式分别为: Pu3++3NO-3a+4TODGAo→Pu(NO3) 3·4TODGAo Pu4+a+4NO-3a+3TODGAo→Pu(NO3)4·3TODGAo PuO2+2a+2NO-3a+2TODGAo→PuO2(NO3)2·2TODGAo  相似文献   

9.
本文研究了H~+、NO_3~-对在μ=3的Pu(Ⅳ)高氯酸溶液中的光化学行为的影响。证明NO_3~-对光氧化有较大的影响。在63℃和μ=3时,对Pu(Ⅳ)的热歧化与歧化过程中紫外光的作用进行了比较,结果表明紫外光照射有利于歧化反应的进行,其反应浓度商比避光时在〔H~+〕为1.0、1.5、2.0和3.0mol/L时分别为2.2×01~2;4.15×10~2;1.98×10~2和3.16×10~2倍。 研究了甲醇、乙醇、UO_2~(2+)和Fe(3+)对Pu(Ⅳ)在HNO_3溶液中光化学行为的影响。发现Fe~(3+)的加入可使Pu(Ⅵ)量显著减少,当〔Fe~(3+)〕≥0.038mol/L时,可使Pu(Ⅵ)的生成量由>80%降低到<10%。对Fe~(3+)抑制Pu(Ⅵ)生成的机理进行了初步探讨。  相似文献   

10.
利用InGaAs检测器与C-T固定光栅结合,外加光纤技术,研制了Pu(Ⅳ)和硝酸快速分析装置。应用NIST SRM2065标准物质测试表明,该仪器测量速度快、波长重复性好、稳定性高。采用该分析装置建立了后处理工艺中Pu(Ⅳ)和硝酸含量的快速分析方法,水相料液中硝酸和钚的测定范围分别为0.42~3.97mol/L、1.07~25.26g/L。  相似文献   

11.
研究了氨基羟基脲(HSC)与Pu(Ⅳ)的还原反应动力学,其动力学方程式为:-dc(Pu(Ⅳ))/dt=kc(Pu(Ⅳ))c1.06(HSC)c-0.43(H+)c-0.58(NO3-),在22.1℃时反应速率常数k=(11.8±1.1)(mol/L)-0.046•s-1,活化能为(71.0±1.0)kJ/mol。研究了氨基羟基脲浓度、H+浓度、硝酸根浓度、Fe3+浓度、UO22+浓度对氨基羟基脲与Pu(Ⅳ)还原反应速率的影响,增加氨基羟基脲浓度,降低H+浓度、硝酸根浓度,Pu(Ⅳ)还原速度增加;UO22+浓度和Fe3+浓度对Pu(Ⅳ)还原速度基本无影响。  相似文献   

12.
一、引言用超离心法测定锕系元素在硝酸介质中的扩散系数是有实际意义的研究课题。为了测定硝酸溶液中Pu(Ⅲ)的扩散系数,需制备Pu(Ⅲ)的硝酸溶液。肼还原法是常用的一种方法,肼既可作还原剂还可作Pu(Ⅲ)的价态稳定剂。由于在有大量钚的存在硝酸溶液中,时间放置长,肼会有一定的分解。Pu(Ⅲ)和Pu(Ⅳ)的相对含量也会发生相应的变化。为探索Pu(Ⅲ)与Pu(Ⅳ)浓度随时间变化的规律,必须定时测定它们的浓度。由  相似文献   

13.
研究了模拟处置条件下Pu(Ⅳ)的溶解行为,测定了Pu(Ⅳ)在北山地下水和去离子水中的溶解度。采用过饱和法,使用低氧手套箱模拟地下无氧环境,利用超过滤实现固液分离,应用低本底液闪谱仪测量液相中钚的放射性活度。结果表明:溶解-沉淀平衡后,无论是在去离子水还是北山地下水中,钚的主要存在价态为+4。Pu(Ⅳ)在北山地下水和去离子水中的溶解度分别为(2.8±0.9)×10-8 mol/L和(1.6±0.8)×10-9 mol/L。通过计算确定了Pu(Ⅳ)在去离子水和北山地下水中的溶解度控制固相为Pu(OH)4(am)。在去离子水体系中,Pu(Ⅳ)的主要存在形态为Pu(OH)4(aq);北山地下水体系中,Pu(Ⅳ)的主要存在形态为Pu(OH)4(aq)和Pu(OH)2(CO3)2-2。  相似文献   

14.
为开发Pu(Ⅳ)的高选择性萃取剂,实现废液中微量钚的回收,以正十二烷作为稀释剂,研究2,2′-((4-乙氧基-1,2-亚苯基)双(氧基))双(N,N-双(2-乙基己基)乙酰胺)(4-EthoxyBenzoDODA)对U(Ⅵ)、Pu(Ⅳ)的萃取行为,以及两相混合振荡时间、水相硝酸浓度和有机相萃取剂浓度对U(Ⅵ)、Pu(Ⅳ)萃取分配比的影响。硝酸的萃取实验结果表明,4-EthoxyBenzoDODA(KH=0.14)比BenzoDODA(KH=0.44)碱性弱,更有利于选择萃取离子势较强的Pu(Ⅳ)。对U(Ⅵ)、Pu(Ⅳ)的萃取实验表明,Pu(Ⅳ)对U(Ⅵ)的分离因子最高可达6.9,Pu(Ⅳ)对Eu(Ⅲ)的分离因子最高可达223。采用斜率法分析了4.0 mol/L HNO3浓度下U(Ⅵ)萃合物的组成,主要为UO2(NO3)2·L)、Pu(Ⅳ)(Pu(NO3)4·L和Pu(NO3)4·L2共存。使用硝酸肼或者硝酸羟胺等还原反萃剂,可以将负载有机相中98%的Pu反萃至水相中。结果表明,4-EthoxyBenzoDODA对Pu(Ⅳ)具有一定的选择性。  相似文献   

15.
本文研究了H~+,N0_2~-对在μ=3的Pu(Ⅳ)高氯酸溶液中的光化学行为的影响。证明NO_3~-对光氧化有较大的影响。在63℃和μ=3时,对有无紫外光作用时Pu(Ⅳ)歧化反应进行了比较,结果表明紫外光照射有利于歧化反应的进行,二者反应浓度商的比值在[H~+]为1.0,1.5,2.0和3.0mol/l时分别为2.2×10~3,4.15×10~2,1,98×10~2和3.16×10~2。 还研究了甲醇、乙醇、UO~(2+)和Fe~(3+)对Pu(Ⅳ)在HNO~3溶液中光化学行为的影响。发现Fe~(3+)的加入可使Pu(Ⅵ)量显著减少,当[Fe~(3+)≥0.038mol/l时,可使Pu(Ⅵ)的生成量由>80%降低到<10%。对Fe~(3+)抑制Pu(Ⅵ)生成的机理进行了初步探讨。  相似文献   

16.
本文研究了用二—(2—乙基己基)磷酸(HDEHP)从硝酸溶液中萃取Pu(Ⅳ)时影响分配系数的几个因素。初步讨论了HDEHP萃取Pu(Ⅳ)的萃取机理和萃合物的组成,研究了金属盐类和氟离子对HDEHP萃取Pu(Ⅳ)的影响和用草酸从HDEHP中反萃Pu。最后,模拟工艺料液测定了HDEHP萃取Pu(Ⅳ)的收率,Pu和Am(超钚元素代表)、Eu(镧系元素代表)的分离系数及主要裂变产物的分配系数,推荐了从堆照靶子中提取钚的工艺条件。  相似文献   

17.
研究了酰胺荚醚N,N,N′,N′-四丁基-3-氧-戊二酰胺(TBOPDA)和N-503(N,N′-二乙基庚酰胺)以及TBOPDA与N-503的组合萃取剂在硝酸介质中对U(Ⅵ)、Pu(Ⅳ)、Am(Ⅲ)、Eu(Ⅲ)和其他一些金属离子的萃取行为,稀释剂为40%正辛醇-煤油。用0.075mol/LTBOPDA+0.5mol/LN-503/40%辛醇-煤油为萃取剂,从模拟高放废液中分离U(Ⅵ)、Pu(Ⅳ)、Am(Ⅲ)和Eu(Ⅲ)的微型混合澄清槽实验结果表明在A槽,大于99.99%的U(Ⅵ)、Pu(Ⅳ)、Eu(Ⅲ)和Am(Ⅲ)被萃入有机相;在R1槽,U(Ⅵ)被定量反萃,83%的Pu(Ⅳ)和36%的Am(Ⅲ)被反萃入水相;在R2槽中残留的Pu(Ⅳ)、Am(Ⅲ)和Eu(Ⅲ)可被定量反萃下来。该流程可有效提取高放废液中的锕系元素,并可对其进行组分离。  相似文献   

18.
本文用分光光度法研究了在硝酸介质中U(Ⅳ),U(Ⅵ),Pu(Ⅲ)和Pu(Ⅳ)的吸收光谱以及存在的杂质离子、酸度对吸收光谱的影响;在U(Ⅳ),U(Ⅵ),Pu(Ⅲ)和Pu(Ⅳ)的特征吸收峰位置,测量了铀、钚混合液的吸光度及其克分子吸光系数,计算出四种铀、钚离子的含量。结果表明,当铀加入量在10毫克/毫升,钚含量在0.6毫克/毫升以上时,测量误差不超过±5%,方法的精密度铀为±0.4%,钚为±0.5%,可信度为66%。  相似文献   

19.
实验研究二(2,4,4-三甲基戊基)二硫代膦酸(HBTMPDTP)对Pu(Ⅲ)的萃取行为。考察了搅拌时间、平衡水相pH、水相不同盐分、萃取剂浓度以及温度等因素对萃取平衡的影响。给出了萃取反应方程式,并计算获得了萃取平衡常数、萃取反应焓和熵。通过与文献中所报道的HBTMPDTP对Am(Ⅲ)、Cm(Ⅲ)的萃取行为比较可知,HBTMPDTP萃取Pu3+、Am3+、Cm3+的能力依次为Pu3+>Am3+>Cm3+。   相似文献   

20.
在硝酸介质中,研究异丁醛(IBD)还原Pu(Ⅳ)反应的动力学性能和行为,通过考察Pu(Ⅳ)浓度、异丁醛和硝酸浓度等对Pu(Ⅳ)还原反应速率的影响,确定了反应的动力学速率方程。研究温度对速率的影响,求得反应活化能为51.7kJ·mol~(-1)。实验表明,异丁醛是Pu(Ⅳ)较好的还原剂。对还原反应的机理作了推测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号