首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional properties, antioxidant and Angiotensin-converting enzyme (ACE) inhibitory activities of peanut protein isolate (PPI) and peanut protein hydrolysate (PPH) prepared using Alcalase, at different (10%, 20%, 30% and 40%) degrees of hydrolysis, (DH) were investigated. Hydrolysis (at DH > 10%) significantly (p < 0.05) improved the solubility (>80%) of PPI, especially in the pH range of 4–6. However, PPI showed better emulsifying and foaming properties than PPH (p < 0.05). As DH increased, ferrous ion chelating activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ACE inhibitory activity of PPH increased, while reducing power decreased (p < 0.05). Bleaching of beta-carotene by linoleic acid was suppressed better by PPI and PPH at 10% DH than of PPH at higher DH. Thus, the results reveal that DH affects functional properties, antioxidant and ACE inhibitory activities of peanut protein.  相似文献   

2.
采用胰蛋白酶、碱性蛋白酶、中性蛋白酶水解花生蛋白,研究了水解过程中水解度的变化,并对水解产物的ACE抑制活性进行了探讨。得出三种酶对花生蛋白的水解作用:碱性蛋白酶>胰蛋白酶>中性蛋白酶。碱性蛋白酶水解产物ACE抑制活性明显高于胰蛋白酶和中性蛋白酶,水解产物的ACE抑制活性高达89.73%,中性蛋白酶水解产物ACE抑制率仅为27.24%。  相似文献   

3.
Whole common Kilka fish was hydrolyzed separately using four commercial enzymes, Alcalase, Neutrase, Protamex at 50 °C and Pepsin at 37 °C for 30, 60 and 90 min. Degree of hydrolysis, angiotensin-I-converting enzyme (ACE) inhibitory activity and antimicrobial activity of each hydrolysate against Gram-negative (Escherichia coli, Salmonella enteritidis) and Gram-positive (Staphylococcus aureus, Listeria innocua) bacteria were studied. Results showed that the degree of hydrolysis for all enzymes was in the range of 2.63–3.36%. Electrophoresis profiles of the Kilka protein hydrolysates showed that most of produced peptides were in the range of 30 D but Alcalase and Neutrase had a better performance in the production of low molecular weight peptides in the range of 10 D. This led to increase the antimicrobial activity against the examined bacteria at the concentration of 200 µg/mL peptide solution. The Neutrase enzyme produced hydrolysate with the highest ACE inhibitory activity (53%?±?1.8 at 500 µg/mL). Antimicrobial activity of Kilka protein hydrolysates using Protamex and Pepsin was lower than the others due to lack of considerable amount of small peptides. The current research has demonstrated that the peptides derived from the enzymatic hydrolysis of Kilka fish protein in optimum conditions are capable of being converted to antimicrobial and antihypertensive agents to be used in functional foods.  相似文献   

4.
The degree of hydrolysis (DH) and angiotensin I-converting enzyme (ACE)-inhibitory activity of vital wheat gluten (VWG) hydrolyzed using Alcalase were investigated using Box-Behnken response surface methodology (RSM). The mean responses were fitted to a second order polynomial to obtain regression equations. The enzyme-substrate ratio and the hydrolysis time increased the DH significantly (p<0.05). The substrate concentration was the only significant linear term leading to an increase in ACE-inhibitory activity. The optimized conditions of a substrate concentration of 5.04%, an enzyme-substrate ratio 5.94%, and a hydrolysis time 30.79 min gave a point prediction of a 12.74% DH and 82.28% ACE-inhibitory activity. Analytical results from confirmatory experiment were a 12.22%±0.5 DH and a 78.93%±1.07 ACE-inhibitory activity. The optimized conditions of the study provide useful information to the functional food and beverage industries to enhance the anti-hypertensive activities of peptides from VWG.  相似文献   

5.
Qian Liu  Lianzhou Jiang  Jing Liu 《LWT》2009,42(5):956-8832
A study was conducted to investigate the antioxidant capacity of porcine plasma protein before and after enzymatic hydrolysis. Porcine plasma protein was hydrolyzed by using Alcalase with degree of hydrolysis (DH) ranged from 0 to 17.8%. The free radical scavenging effects of porcine plasma protein hydrolysates (PPH) were evaluated by electron spin resonance (ESR) spectrometer. The reducing power of PPH increased with increasing of DH (P < 0.05). The 5-h PPH exhibited the strongest inhibition of lipid oxidation, as indicated by lowest thiobarbituric acid-reactive substance values in a liposome-oxidizing system, and the strongest free radical scavenging ability on 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), hydroxyl (OH) and superoxide (O2-) radicals. The increase of protein concentration enhanced (P < 0.05) free radical scavenging effect of PPH. Although non-hydrolyzed plasma protein displayed an antioxidative effect, it was far less potent than PPH. The results indicated that the antioxidant capacity of porcine plasma protein could be enhanced by enzymatic hydrolysis of Alcalase.  相似文献   

6.
BACKGROUND: Enzymatic proteolysis of food proteins is used to produce peptide fractions with the potential to act as physiological modulators. Fractionation of these proteins by ultrafiltration results in fractions rich in small peptides with the potential to act as functional food ingredients. The present study investigated the angiotensin‐I converting enzyme (ACE‐I) inhibitory and antioxidant activities for hydrolysates produced by hydrolyzing Vigna unguiculata protein extract as well as ultrafiltered peptide fractions from these hydrolysates. RESULTS: Alcalase®, Flavourzyme® and pepsin–pancreatin were used to produce extensively hydrolyzed V. unguiculata protein extract. Degree of hydrolysis (DH) differed between the enzymatic systems and ranged from 35.7% to 58.8%. Fractionation increased in vitro biological activities in the peptide fractions, with IC50 (hydrolysate concentration in µg protein mL?1 required to produce 50% ACE inhibition) value ranges of 24.3–123 (Alcalase hydrolysate, AH), 0.04–170.6 (Flavourzyme hydrolysate; FH) and 44.7–112 (pepsin–pancreatin hydrolysate, PPH) µg mL?1, and TEAC (Trolox equivalent antioxidant coefficient) value ranges of 303.2–1457 (AH), 357.4–10 211 (FH) and 267.1–2830.4 (PPH) mmol L?1 mg?1 protein. CONCLUSION: The results indicate the possibility of obtaining bioactive peptides from V. unguiculata proteins by means of a controlled protein hydrolysis using Alcalase®, Flavourzyme® and pepsin–pancreatin. The V. unguiculata protein hydrolysates and their corresponding ultrafiltered peptide fractions might be utilized for physiologically functional foods with antihypertensive and antioxidant activities. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
The importance of water-to-substrate ratio, protease type, percent enzyme and incubation time on hydrolysates produced from shrimp processing byproducts was investigated using Taguchi’s L16 (45) experimental design. Protease type significantly (p < 0.05) influenced soluble yield, degree of hydrolysis (DH), angiotensin-I-converting enzyme (ACE) inhibitory activity and bitterness of hydrolysates, while percent enzyme only affected the DH. Hydrolysates produced by Alcalase and Protamex possessed strong ACE inhibitory activity (IC50 = 100–200 μg/ml and 70 μg/ml, respectively), accompanied by high yield, high DH and strong bitterness. Furthermore, ACE inhibition was positively correlated (r2 = 0.87) with bitterness of the hydrolysates. Fractionation by size-exclusion chromatography revealed that the bitter substances, which also showed strong ACE inhibition, were <3 kDa in size and contained many hydrophobic residues, including Tyr, Phe, Leu, Ile, Val and Lys. Despite the bitterness, these hydrolysates may have potential health benefits, arising from their potent ACE inhibitory activity.  相似文献   

8.
The effect of combined treatments of hydrolysis with different proteases, and subsequent polymerization with transglutaminase on the antigenic activity of β-Lg was studied. For the hydrolysis of β-Lg using Alcalase, Neutrase or bromelain, the reaction conditions were 3?% β-Lg and enzyme:substrate 25?U?g?1 of protein, as was defined using factorial study. Under these conditions, the degree of hydrolysis (DH) of the hydrolysates was 12.6?% when obtained with Alcalase and approximately 4?% with Neutrase or bromelain. Post-hydrolysis polymerization did not result in an increase in molecular mass of the protein, but these samples presented a lower DH, determined by trinitrobenzenosulfonic acid (TNBS) method, suggesting that polymerization had occurred. Hydrolysis with the three enzymes reduced the β-Lg antigenicity, as evaluated by ELISA and immunoblotting analyses. The IgE-binding responses were practically null (<9?μg?mL?1), 22.82 and 55.73?μg?mL?1 towards the hydrolysates obtained with Alcalase, bromelain, and Neutrase, respectively. The post-hydrolysis polymerization increased or had no significant effect (P?≥?0.05) on the antigenic response of the hydrolysates.  相似文献   

9.
分别以碱性蛋白酶Alcalase和中性蛋白酶Neutrase对花生分离蛋白进行水解,制备花生分离蛋白水解物,并测定不同水解时间所得产物对血管紧张素转化酶(ACE)的抑制活性。未水解的花生分离蛋白没有ACE抑制活性,用中性蛋白酶Neutrase水解所得的水解物显示弱ACE抑制活性。然而,碱性蛋白酶Alcalase水解物具有很强的ACE抑制活性,水解0.5h时水解物活性最高,其半抑制浓度为(IC50)0.56mg/ml。本研究表明,当用碱性蛋白酶Alcalase水解时,花生分离蛋白是生产ACE抑制肽的良好蛋白质来源,花生分离蛋白碱性蛋白酶Alcalase水解物可作为具有降压功能的功能食品添料。  相似文献   

10.
通过纳米粒度分析、傅立叶红外光谱(FTIR)、乳化性、乳化稳定性、蛋白溶解性、抗氧化性及ACE抑制率的测定,分析探讨酪蛋白及其不同水解度(DH 2.4%、4.5%、7.1%、8.3%)的嗜酸乳杆菌胞壁蛋白酶(CEP)酶解产物的结构及功能特性。FTIR分析表明CEP酶解改变了酪蛋白各种构象所占的比例,酪蛋白二级结构发生了不同程度的变化;纳米粒度分析表明酪蛋白颗粒大小随水解的加深先减小后增大,其水解物颗粒在DH 4.5%时最小,乳化稳定性最大;酪蛋白的乳化性随水解的加深先增大后减小,DH 7.1%时增至最大,与其溶解性的变化趋势一致;此外酪蛋白的酶解物具有一定的ACE抑制活性及抗氧化性,且DPPH清除能力在一定范围内随水解度及浓度的增大而增大,当DH为8.3%,浓度为5mg/mL时,DPPH清除能力增大至35.00%。因此CEP酶解可有效改善酪蛋白的结构及功能特性,为乳源性功能多肽的开发提供理论依据。  相似文献   

11.
The effect of (a) limited hydrolysis [0.5–2.0% degree of hydrolysis (DH)] with Alcalase™, (b) cross-linking with transglutaminase (TGase) and (c) combinations of these modifications on the nitrogen solubility (pH 3–8) of soy protein isolate (SPI) was investigated. Between pH 3.0 and 5.0, SPI hydrolysates, hydrolysates of cross-linked SPI and the cross-linked products of SPI hydrolysates displayed significant (P<0.05) increases in solubility compared to unmodified SPI. Cross-linking pre- or post hydrolysis did not alter the overall trend of increased (P<0.05) solubility relative to the unmodified control at low pH. At 2% DH, cross-linking pre- or post-hydrolysis resulted in greater solubility (P<0.05) than that observed in hydrolysates per se at low pH. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE) indicated that the 22 kDa 11S basic polypeptide was relatively resistant to Alcalase hydrolysis and that the 18 and 22 kDa 11S basic polypeptides were not susceptible to TGase cross-linking. The results demonstrate that a combination of enzymatic treatments and the order in which they are applied may have potential for creating novel food ingredients with improved functional properties, especially those properties that are dependant on high solubility at low pH.  相似文献   

12.
Use of low degree of hydrolysis (DH < 10%) with enzymatic treatment can produce protein hydrolysates with functional properties superior to the raw material. Suspensions of Phaseolus lunatus protein isolate (PPI) were treated with one of two commercial enzymes (Alcalase or Flavourzyme) at 50 °C and pH 8.0. DH with Alcalase was greater than Flavourzyme at 5 or 15 min of reaction. Alcalase-prepared hydrolysates had more peptides than those prepared with Flavourzyme. All the hydrolysates had higher solubility than the PPI, the highest being for the Alcalase-prepared hydrolysate at 15 min reaction time. Overall, the Alcalase-prepared hydrolysates had better solubility characteristics, whereas the Flavourzyme-prepared hydrolysates had better film properties (maximum emulsifying capacity and the highest foam formation values). This is probably because of the greater ease of movement toward the interface as shown by their high surface hydrophobicity values. The Alcalase-prepared hydrolysates had generally low or nonexistent film properties.  相似文献   

13.
Bovine collagen was pre-treated (boiled or high pressure (HP)-treated) and then hydrolysed by 6 proteases. The degree of hydrolysis (DH) and the angiotensin-converting enzyme (ACE)-inhibitory activity of hydrolysates were measured. All enzymes used were able to partly degrade collagen and release ACE-inhibitory peptides. The highest ACE-inhibitory activity was obtained with Alcalase. Pretreatment significantly influenced the DH and ACE-inhibition. For most enzymes, boiling for 5 min resulted in a significantly higher DH and ACE-inhibitory activity. With Alcalase and collagenase, hydrolysis and release of ACE-inhibitory peptides occurred without any pretreatment, but HP-treatment significantly improved the DH and ACE-inhibitory activity. HP did not markedly affect the hydrolysis with the other enzymes. The major peptides obtained with Alcalase were identified; all were released from the triple helix structure of collagen. Many of these peptides had C-terminal sequences similar to known ACE-inhibitory peptides. The present results suggest that collagen-rich food materials are good substrates for the release of potent ACE-inhibitory peptides, when proper pre-treatment and enzymatic treatment is applied.  相似文献   

14.
Gelatin (90.6 ± 0.1%) was optimally prepared by response surface methodology from yellowfin tuna (Thunnus albacares, YT) abdominal skin. To investigate bioactive properties of enzymatic hydrolysates from the abdominal skin gelatin (ASG), ASG was hydrolysed with alcalase, protamex, neutrase and flavourzyme as affected by hydrolysis time. Antioxidant, nitrite scavenging and angiotensin‐I converting enzyme (ACE) inhibitory activities of the hydrolysates were determined. Antioxidant activities of the hydrolysates were found through linoleic acid peroxidation inhibitory effects. Alcalase‐derived hydrolysates (AHs) were more effective than others in metal ions chelating, superoxide anion scavenging and hydroxyl radical scavenging activities (P < 0.05). AHs showed significantly stronger nitrite scavenging activities (44.4–60.7%) than others (P < 0.05). Fraction A from AH showed strong ACE inhibitory activity (IC50 of 0.75 mg mL?1). These results suggest that YT ASG and its enzymatic hydrolysates could be functional food and/or pharmaceutical ingredients with potent antioxidant, anticarcinogenic and antihypertensive benefits.  相似文献   

15.
Antioxidant activity and functional properties of porcine blood plasma protein hydrolysates (PPH) prepared with Alcalase at 6.2%, 12.7% and 17.6% of degree of hydrolysis (DH) were investigated. The PPH showed stronger radical-scavenging ability and possessed stronger Cu2+-chelation ability and a reducing power compared to non-hydrolysed plasma protein (< 0.05). The antioxidant activity of PPH, indicated by thiobarbituric acid-reactive substance (TBARS) values in a liposome-oxidising system, increased with increasing DH (< 0.05). The Alcalase hydrolysis increased protein solubility from its original 68.46–81.79% (non-hydrolysed) to 82.95–94.94% (hydrolysed) over a broad pH range (3.0–8.0). However, hydrolysis decreased surface hydrophobicity and suppressed emulsifying and foaming capacity of the plasma protein. To identify antioxidant peptide, PPH was subjected to ultrafiltration, ion-exchange chromatography and reverse-phase high performance liquid chromatography (RP-HPLC), and the amino acid sequences of isolated peptides were determined by liquid chromatography/tendem mass spectrometry (LC–MS/MS). The peptide with the strongest antioxidant activity had the amino acid sequence of His-Asn-Gly-Asn. The results indicated that PPH could be used as a novel antioxidant but may be of limited utility as an emulsifying or foaming agent.  相似文献   

16.
Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe, hydrolysed by Alcalase 2.4 L (RPH) with different degrees of hydrolysis (DH) at various concentrations were examined. As DH increased, the reduction of DPPH, ABTS radicals scavenging activities and reducing power were noticeable (p < 0.05). The increases in metal chelating activity and superoxide scavenging activity were attained with increasing DH (p < 0.05). However, chelating activity gradually decreased at DH above 30%. All activities except superoxide anion radical scavenging activity increased as the concentration of hydrolysate increased (p < 0.05). Hydrolysis using Alcalase could increase protein solubility to above 80% over a wide pH range (2–10). The highest emulsion ability index (EAI) and foam stability (FS) of hydrolysates were observed at low DH (5%) (p < 0.05). Concentrations of hydrolysates determined interfacial properties differently, depending on DH. The molecular weight distribution of RPH with 5%DH (RPH5) was determined using Sephadex G-75 column. Two major peaks with the molecular weight of 57.8 and 5.5 kDa were obtained. Fraction with MW of 5.5 had the strongest metal chelating activity and ABTS radical scavenging activity. The results reveal that protein hydrolysates from defatted skipjack roe could be used as food additives possessing both antioxidant activity and functional properties.  相似文献   

17.
This study aimed to investigate the effect of limited hydrolysis on conformational and antioxidant properties of soy protein isolate-maltodextrin (SPI-Md) conjugates. Extrinsic fluorescence analysis showed unfolding of the protein molecule and exposure of hydrophobic groups in SPI-Md conjugate hydrolysates. Free amino acid analysis showed that, the contents of hydrophobic amino acids in SPI-Md conjugates increased after hydrolysis. The contents of leucine, isoleucine, phenylalanine increased from 0.32, 0.30 and 0.54 to 1.36, 1.86 and 2.60, respectively, when the hydrolysis degree (DH) gradually increased from 0% to 5.7%. The FT-IR spectrum showed that C = O absorption of the amide group formed by glycosylation continued unabated after limited hydrolysis (DH 2.9%). The glycated SPI products showed good reducing power and superior resistance to lipid oxidation (34%, 12 mg mL?1), whereas the limit hydrolysates (DH 2.9%) of SPI-Md conjugates showed more ef?cient radical-scavenging capacity (89.5%, at 12 mg mL?1) and iron-chelation activity (91.3%, at 12 mg mL?1). Results of this study indicated that, slight enzymatic hydrolysis (DH 0–2.9%) could help partially unfolding the globular structure of SPI-Md conjugates without deteriorating amide bonds and had a positive effect on their antioxidant properties.  相似文献   

18.
BACKGROUND: Angiotensin I‐converting enzyme (ACE) plays an important physiological role in regulating blood pressure. The elevation of blood pressure could be suppressed by inhibiting ACE. ACE inhibitory peptides derived from food proteins could exert antihypertensive effects without side effects. Acetes chinensis is a marine shrimp suitable for the production of ACE inhibitory peptides. The principal objective of this study was to screen for the significant variables, and further to optimize the levels of the selected variables, for the enzymatic production of ACE inhibitory peptides from Acetes chinensis. RESULTS: Plackett–Burman design and response surface methodology were employed to optimize the peptic hydrolysis parameters of Acetes chinensis to obtain a hydrolysate with potent ACE inhibitory activity. The peptic hydrolysis variables were subject to a Plackett–Burman design for screening the main factors. The selected significant parameters such as pH, hydrolysis temperature and enzyme/substrate (E/S) ratio were further optimized using a central composite design. The optimized conditions were: pH 2.5, hydrolysis temperature 45 °C, E/S ratio 17 800 U kg?1 shrimp and substrate concentration 200 g L?1. The results showed that 3–5 h hydrolysis could result in a hydrolysate with ACE inhibition IC50 of 1.17 mg mL?1 and a high DH of 25–27%. CONCLUSION: Plackett–Burman design and RSM performed well in the optimization of peptic hydrolysis parameters of Acetes chinensis to produce hydrolysate with ACE inhibitory activity. A hydrolysate with potent ACE inhibitory activity and high degree of hydrolysis was obtained, so that the yield of ACE inhibitory peptides in it was high. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
Functional properties, antioxidant, and angiotensin-I converting enzyme (ACE) inhibitory activities of egg white protein hydrolysate (EWPH) prepared with trypsin at different degree of hydrolysis (DH) were investigated. The DPPH radical scavenging activity, reducing power, lipid peroxidation inhibitory activity, and ACE inhibitory activity increased with DH at first and then decreased gradually. Hydrolysates with 12.4% DH had the highest antioxidant and ACE inhibitory activities. As DH increased, the solubility of EWPH increased while the emulsifying and foaming properties decreased. The functional properties of EWPH were also controlled by pH. Ultrafiltration of the hydrolysate with 12.4% DH revealed that the fractions of molecular weight lower than 3 kDa exhibited the highest antioxidant and ACE inhibitory activities. The results indicated that EWPH with different DH have different bioactive and functional properties and EWPH by controlled hydrolysis may be useful ingredients in food and nutraceutical applications with potential bioactive properties.  相似文献   

20.
Antioxidative activity and functional properties of protein hydrolysates from yellow stripe trevally (Selaroides leptolepis) meat, hydrolyzed by Alcalase 2.4L (HA) and Flavourzyme 500L (HF) with different degrees of hydrolysis (DH) were investigated. As the DH increased, DPPH radical-scavenging activity and reducing power of HA decreased (p < 0.05) but no differences were observed for HF (p > 0.05). Metal chelating activity of both HA and HF increased with increasing DH (p < 0.05). HF generally had a higher (p < 0.05) chelating activity than had HA at the same DH tested. At low DH (5%), HA exhibited a better DPPH radical-scavenging activity while, at high DH (25%), HF had a higher (p < 0.05) reducing power. For the functional properties, hydrolysis by both enzymes increased protein solubility to above 85% over a wide pH range (2–12). When the DH increased, the interfacial activities (emulsion activity index, emulsion stability index, foaming capacity, foam stability) of hydrolysates decreased (p < 0.05), possibly caused by the shorter peptide chain length. At the same DH, the functionalities of protein hydrolysate depended on the enzyme used. The results reveal that antioxidative activity and functionalities of protein hydrolysates from yellow stripe trevally meat were determined by the DH and by the enzyme type employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号